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Chapter One 

The Isotropic Vector Matrix

Measurement depends upon your frame of reference. Being a scientist, I am very 
optimistic, that is, I want to optimize on every measurement, to use the simplest possible 
means. For example, the shortest distance between two points is a straight line. If your plane is 
curved, the shortest distance requires you to go outside the plane. A tunnel through the Earth's 
crust is straighter than a path along the surface (if geology is not considered).

Traditional mathematics is based upon the unit square as the optimum measure and calls 
it the simplest form. It requires each side to be of unit measure. Therefore, the diagonal of a 
square becomes √2. But in reality, the triangle is the simplest form. 

If the diagonal of the square is chosen to be the criteria for unity instead of the side, then 
we admit the triangle to be the simplest form and the side of the square becomes 1/√2 (which is
equal to (√2)/2 for people who are uncomfortable with an irrational in the denominator.)

The main question I want to answer in this book is how many equilateral triangles or 
tetrahedrons instead of how many squares or cubes. Why? I'll answer that question below. First,
let me introduce you to Buckminister Fuller's idea of the Isotropic Vector Matrix.
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The Isotropic Vector Matrix comes
from the closest packing of unit radius
spheres. Each sphere within the isotropic
vector  matrix has 12 surrounding spheres.    
Connecting the centers of each of the 12
spheres to the center of the nuclear sphere
are 12 double radii radiating from the
nuclear sphere. (One radius from each
sphere connected to one radius from the

nuclear sphere.) Each axis is separated by 60
o 
from an adjacent axis. This angle of  60

o 
 is a 

property of the adjacency of the spheres.

     These radii form four hexagonal planes. 
Connecting the ends of the radii together with 
double radii connects each sphere into a matrix. 
Since the radius of a sphere is called a vector, this 
matrix is called an Isotropic Vector Matrix. With 
all thirteen spheres connected at their centers, we 
form a cuboctahedron,
which is a cube with its
corners sliced off. It is
intersected by the four
hexagons. Buckminister
Fuller called this the 

 Vector Equilibrium.

The Natural Way to Measure

If the diagonal is designated unity from the beginning, then the 
Pythagorean Theorem says the sides become equal to 1/√2 or √2/2. This is 
the cos 45o or the sin 45o . 

Now, if we use this diagonal of  1 unit as a radius of a circle, generalizing 
the square to become a rectangle, we get all the
angles between 0o and 90o. Therefore, we get all
the values of sin θ and cos θ. The diagonal is a

whole number separated from irrational numbers by 45o .

Taking this to a higher dimension is a cube showing diagonals
on each side producing 5 tetrahedrons on the inside. The diagonals are
60o away from each other on the inside because three side diagonals
make an equilateral, equiangular triangular plane with inside angles of
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60o, but these diagonals are 45o away from the edges of the cube.

 The 60  
o
   triangle is at a 45  

o
     angle to the edge of the cube, therefore, the isotropic vector 

matrix coincides with, but is separated from the cubic vector matrix by 45
o
. Only the 

diagonals of the cube's faces are set within the isotropic vector matrix!

Four 1/8 unit spheres within the isotropic vector matrix come 
together within the cubic vector matrix such that four of the corners 
correspond to the centers of the spheres, and  the cube's face 
diagonals coincide with the sphere's radii, making the diagonals of 
the square sides two units each, that is, two opposing vectors. 
Therefore, each square side on the cube has a diagonal of 2, and each
edge of the cube has a length of  √2 . The area of each one of these 
squares is (√2 )2 = 2 traditional unit squares. But for our purposes, a 
unit square has a unit diagonal with sides of √2 . 

The traditional area of the cube is (√2 )3  =  2.828428.

The unit octahedron is made up of four unit tetrahedrons.
Therefore, the volume of the octahedron is 4 tetrahedrons. Cut two
of these tetrahedrons in half to make four  ½ – tetrahedrons, each
having a volume of 1/

2 . When four ½ – tetrahedrons are added to each
face of the unit tetrahedron, the smallest cube is created because
4(1/

2) + 1 = 3, an easier way of calculating the smallest cube than
using the √2. 

    
       The diagonals of the six
faces of a cube which only
line up with the isotropic
vector matrix form two
interlacing tetrahedrons. The
tetrahedron is therefore more
fundamental than a cube for
measuring volume. Taking
one of these tetrahedrons and

adding the right kind of tetrahedron to each one of the four
faces, it takes five tetrahedrons to make one cube.  

Comparing this rational volume of 3 to the calculated volume using the √2, we get the 
synergetics conversion factor of   3/2.828428 = 1.06066 . Using this conversion factor on 
conventional areas and volumes, they are converted to rational areas and volumes. This 
conversion factor of 1.06066  =  √(9/8) .

For areas, 2 dimensions,√(9/8) is  triangled to become (√(9/8) )2 = 9/
8  . 
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For volumes, 3 dimensions, √(9/8) is tratrahedroned to become (√(9/8) )3 =  1.193243.

Here are some examples. 
The Great Pyramid at Giza has a volume of 2.5 million cubic meters. 

2.5 x 1.193243 = 3, that is 3 million tetrahedrons. 

The Chalula Pyramid in Mexico has a
volume of 4.45 million cubic meters. 4.45 x
1.193243 = 5 million tetrahedrons. 

The numbers become rational.

(Triangled and tetrahedroned will be explained later, being equivalent with squaring and 
cubing.)

The traditional way of calculating uses only squares and cubes, locking mathematicians 
into using irrational numbers to provide precise measurements. This is true because both the 
square and the cube are not units of measure. They are divisible, so they have to make up for 
this by using irrational numbers or parts of squares or cubes.
  

What we have here is that the square or the cube are not basic and fundamental shapes 
that form the basis of a coordinate systems. The basic shapes as we have seen are the triangle 
and the tetrahedron. General coordinate systems need to be interpreted on the basis of the 
primary and most basic of shapes, the triangle and tetrahedron which are indivisible.

Doubling the original square, we have 4
smaller squares whose diagonals produce an inner
square with unit sides separated 45o from the parent
square. 

   Taking this into 3 dimensions and following the
unit diagonals around the cube, we find inside the cube 4 hexagons,
each one of which is in a different coordinate system 45o  away from
what the cube exists in. In other words, within the 90o coordinate
system, turned at an angle of 45o , is a 60o coordinate system.

 Each unit hexagon is divided into 6 unit triangles. The
sides of these triangles are the axes of the hexagon. They
correspond with the three x, y, z axes of the 90o

coordinate system projected onto a plane. All three basis
vectors can be brought together to form a triangle. This
forms a coordinate system where 

k = i + j. This negates the Pythagorean Theorem. Generalizing, z = x + y.
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Notes:

Each edge of this cuboctahedron is formed
from the double vector radii of two touching
spheres, each vector opposing the other one.
Adding up all the vectors results in a zero vector.
Therefore, this cuboctahedron is named the 
Vector Equilibrium.

This relationship of the 12 points of contact around a 
sphere and the 12 centers of the 12 surrounding spheres and 
the 12 points of contact between the Vector Equilibrium and 
its encasing square are all brought together by rotating each 
of the hexagonal planes slicing through the Vector 
Equilibrium getting the four great circles of a sphere. This 
uses the four major axes of rotation of the Vector Equilibrium
(through the 8 corners of the cube).  Each circle touches 3 
other circles. Each circle has three points of contact. That is 3
x 4 = 12. That cements the relationships. (Also, the 3 
dimensions of the sphere times the 4 great circles of the 
sphere equals 12.)
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Chapter Two

Volume

Volume has traditionally been measured using the cube. N
3
 (N cubed) is a cubic volume 

and is three edges of a cube multiplied together. (Each edge being divided by an equal number.)
If we measure volume using the tetrahedron as the basic unit of measure, N

3
 (called N 

tetrahedroned) is three edges of the tetrahedron multiplied together. Dividing each side of the 
cube into n squares, the cube is divided into n

3
 cubes. Dividing the tetrahedron into  n

3
 does not

work, for the tetrahedron and the cube do not have a one–to–one correspondence. 

For a cube, For a tetrahedron,

n n
3
                 n

3
 

1 1 1
2 8 7
3 27 26
4 64 52

 5        125 107
etc. etc. etc.

The volume of a cube and the volume of a tetrahedron is different. The cube is an all 
space filler, but the tetrahedron is not. But combined with the octahedron having a volume of 4,
the combination of octahedron and tetrahedron with a volume of 1 fills all of space. So 
counting the octahedrons in each succeeding layer of the tetrahedron where each layer is of the 
same height, we get the triangular numbers of octahedrons as 0, 1, 3, 6, 10, 15, 21, 28, etc. The 
count of the volumes of octahedrons in each layer added to the count of the volumes of  
tetrahedrons in each succeeding layer give the volume of each layer of a tetrahedron:

tetrahedral volumes + octahedral volumes = Volume of Tetrahedron layer
1 0 1 (equal to n
3 4 7   tetrahedral
7 12 19 volumes)        
13 24 37
21 40 61
etc. etc. etc.

so that the volume of each succeeding tetrahedron is the first plus the second plus the third, etc.

1 + 7 = 8 = 2
3

8 + 19 = 27 = 3
3

27 + 37 = 64 = 4
3

64 + 61 = 125 = 5
3

etc. etc.
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Notice that the list of volumes now correspond with the volumes of cubes, so the addition of  
octahedrons to tetrahedrons gives a one–to–one correspondence of cubes and tetrahedrons. 

Therefore, a number n tetrahedroned, that is, n3, corresponds to a number cubed.
                                                                        

Volume as the Tetrahedral Part

The equi–angled, equi–
edged triangle has three axes from
each corner to opposite side dividing
the triangle into 6 right triangles.

In a unit tetrahedron, these
axes on each of the faces of the
tetrahedron become planes within the
tetrahedron, and they divide the
tetrahedron into 4 x 6 = 24 modules, each one being  called the 

       A–Quanta Module.

A whole octahedron has a volume of 4. 1/8th of that is a volume of ½. Taking away a 
quarter of a tetrahedron, which is ¼  volume, gives you a quarter volume. Dividing that by 6 
gives you a 1/24th volume. Call that the B Quanta Module. The A and B Quanta Modules are 
equal in volume.
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 Neither the tetrahedron nor the octahedron are all space
fillers. It takes both to fill all of space. That is why to describe
any part of space, you need a collection of A and B quanta
modules, A's coming from tetrahedrons, and B's coming from
octahedrons.

Taking each of the 20 equilateral triangles of the
spherical icosahedron (an icosahedron drawn on the surface of
a sphere) and dividing them into 6 right triangles, you get 20 x
6 = 120 LCD (lowest common divisor) triangles. Any further
subdivision is no longer similar, thus the LCD 60 positive, 60
negative triangles.

Taking one of the A–Quanta Modules and unfolding it, you get an LCD triangle. The 
LCD triangle is 1/

120 th of surface area division caused by 15 great circles of the spherical 
icosahedron. 

Volume of a Sphere
For a unit sphere, the radius being one, the conventional volume is 4/3 p r3 = 4.188790 

cubes. Multiplying by the synergetics constant for 3 dimensions, [√(9/8)]3, that is, 4.188790  x 
1.193243 = 4.998425. That is 5 tetrahedrons. It has therefore become rational and the new 
formula for spherical volume is V =  5r 3.  An easier way of getting the volume of the unit 
sphere is dividing the surface into 120 LCD triangles and extending them to the center to form 
120 tetrahedrons, each having the volume of an A or B Quanta Module, each one having a 
volume of 1/24th of a unit tetrahedron. Therefore, 
120 x 1/

24 = 5,  the volume of the unit sphere.

The volume of the unit cube is 3. Taking away the 8 corners, such that each is 1/16 th of a 
unit tetrahedron, produces the Vector Equilibrium. 8 x  1/16 = ½ , so the sum of the corners taken
away is ½ of a unit tetrahedron, showing that the volume of a unit or basic Vector Equilibrium 
is 3 – ½ = 2 ½ . Therefore, the volume of a unit sphere, being 5, is the same as the volume of 
two Vector Equilibriums and has the same volume as 120 A and B Quanta Modules. (The 
volume of the rhombic dodecahedron can be found similarly using A and B Quanta Modules.)

All symmetric forms can be measured simply using the tetrahedron as the unit of 
measure. This is without the use of p.
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There is a ratio involved in the volume of a sphere.
It is 15/3. It comes from (120/8)/(24/8), 8 because of 
the spherical octahedron where there are 8 faces. The 
spherical right triangle within the spherical equilateral
triangle is 1/120th of the surface area. In both the 
spherical  icosahedron and the spherical octahedron, 
there are 15 A and B quanta modules in one of the 
spherical triangular faces.

Another ratio is 20/4 related to the spherical 
cuboctahedron made up of 60 A and B Quanta 
Modules. This also has to do with the volume of a 
sphere. (15/3) x 4 = 60/12 = (20/4) x 3. There are 4 
planes in the Vector Equilibrium and three axes in 
each of the 4. The Vector Equilibrium is the key to the

reason why the unit sphere is 5. The cuboctahedron has 60 A and B Quanta Modules. 60/12 = 
5.

There is a relationship between the icosahedron, the cuboctahedron, and the 
dodecahedron. The cuboctahedron and the icosahedron have the same number of vertexes, 
where the closest packing of spheres have their centers. Taking out the central sphere from the 
cuboctahedron, it contracts to a more symmetrical configuration, the icosahedron, but the 
number of vertexes, which is 12, remain constant. The dodecahedron has 20 vertexes, but it has
12 faces. The spherical dodecahedron thus has 12 equally spaced centers on its surface where 
the vertexes of the encased icosahedron touches the surface, as does the cuboctahedron. So the 
relationship of each of these spheres is this 12 equally spaced points. This obviously comes 
from the way 12 spheres pack closely around a central sphere. Thus common denominator of 
12.  

Formation of the Dodecahedron

Take 6 circles surrounding one circle and push them onto the center circle with equal 
force. The center circle becomes a hexagon. Beehives are the result of the most economical use 
of circular space. The dodecahedron represents the most economical use of three dimensional 
space, and like the cube is an all–space filler. If you take 12 soft spheres surrounding a central 
soft sphere and each outer  sphere is pushed with the same force towards the central sphere, a 
dodecahedron results. 
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Sample Volumes

This chart shows some examples of the volumes of some solids based on the volume of 
the tetrahedron as unity.

SYMMETRICAL FORM 
(based upon the closest
packing of unit radius

spheres)

TETRA VOLUMES
(the unit of volume being one

unit tetrahedron)

A and B QUANTA
MODULES

(multiples of 12 spheres
surrounding nuclear sphere)

Tetrahedron 1 24 = 2 x 12

Vector Equilibrium 2 ½ 60 = 5 x 12

Cube 3 72 = 6 x 12

Octahedron 4 96 = 8 x 12

Nuclear Sphere 5 120 = 10 x 12

Rhombic Dodecahedron 6 144 = 12 x 12

All of the above symmetrical forms are of the form Nr
3

 where N is the number of 
tetrahedrons in the volume of the basic form and r is the frequency of that form. For example, 
using r as equal to 2nd frequency, r

3
 = 2

3
 = 8: (frequency as expansion of time through space)

SYMMETRICAL FORM
Nr3

TETRA VOLUMES
r

3
 (r = 2)

A and B 
QUANTA MODULES

tetrahedron
8

08 x 24 = 192  =  8 x 24

vector equilibrium 20 20 x 24 = 480  =  8 x 60          

cube 24 24 x 24 = 576  =  8 x 72

octahedron 32 32 x 24 = 768  =  8 x 96

nuclear sphere 40 40 x 24 = 960  =  8 x 120

rhombic dodecahedron 48 48 x 24 = 1152  =  8 x 144
Remember that an A or B quanta module is 1/24th volume.
The number of A and B quanta modules are shown here as multiples of tetrahedrons of 

frequency 2 times the number of A and B quanta modules in the primary forms. 
The number of A and B quanta modules are also the same number as important angles 

with a system of angles, lines and planes making up three dimensional forms.
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(from Buckminister Fuller's Synergetics)

A comparison of the end views of the A and B Quanta Modules shows that they have 
equal volumes by virtue of the fact that they have equal base areas and identical altitudes.

It follows from this that if a line, originating at the center of area of triangular base of the
regular tetrahedron, is projected through the apex of the tetrahedron to infinity, is subdivided 
into equal increments, it will give rise to additional Modules to infinity. Each additional 
Module will have the same volume as the original A or B Module, and as the incremental line 
approaches infinity the Modules will tend to become lines, but lines still having the same 
volume as the original A or B Module.

End view shows Modules beyond the H Module shown in (B).
The two discrete members X and Y can move anywhere along their respective axes and 

the volume of the irregular tetrahedron remains constant. The other four edges vary as required.
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Chapter Three
Area

You can draw an infinite number of lines through a single point, but you can only draw a 
single line through two points.

Drawing one line through any two points, you can only draw three lines through three 
points. 

But if you try to draw all the lines you can through a group of four points using the 
postulate of drawing one line through any two points, you cannot draw any less than six lines, 
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and therefore, drawing a simple square is out of the question. Drawing one line through two 
points at a time among a group of four points, gives you two diagonals as well the sides of a 
square. Then there is an additional fifth point. That is because the postulate stated says that you
have to include the lines between the corner points. Therefore, you cannot simply draw four 
lines through four points. You wind up with four triangles, the simplest planar figure, instead of
a simple square. 

The Hexagonal Plane

The Vector Equilibrium is a 4–dimensional 
manifold. It exists 45o from an enclosing cube. It can be 
sliced four ways to produce 4 different planes and has 4 
axes, each axis being coplanar with each of the 4 planes. 
Each one of these planes is a hexagon. The hexagon has 
three axes, each one drawn from corner to opposite corner, 
all three meeting in the center and forming six equiangular 
equilateral triangles. Each one of these hexagons in the 
Vector Equilibrium is a 3–dimensional manifold projected 
onto a plane for 2–dimensional measurement. 

The hexagon represents
a cube with its x, y, and z

axes. Each point within the hexagon is P(x, y, z) and is found
by taking a 60o orthogonal leg from each of the three axes.
First, there are three areas to deal with: (x, y, z), (– x, – y, z),
and (x, – y, – z). These can be divided  into sextants: (x, y, z), 
(y, z, x), (z, – x, – y), (– x, – y, z), (– y, – z, x), and (– z, x, – y).
It must be remembered that each axis extends away from the
central point called the origin of the hexagon. For example, a
line zl parallel to the z axis passing through the origin extends
from the origin to the end of the y and x axes to form an equilateral triangle. This line zl is still 
considered to be the z axis. In like manner, each point inside the hexagon has an x, y and z axis 
passing through it. 

P(x, y, z) in the (x, y, z) sextant is shown on the z side of an 
equilateral triangle with an x axis extending from the y side, and a y axis 
extending from the x side. So for each sextant, only two coordinates and 
one side of an equilateral triangle is needed to determine a point. 

A hexagon represents one cycle of six. One sixth of the hexagon is 
the 60

o
 triangle we want to deal with in this chapter.

Each and Every Triangle Has a One–To–One Correspondence with a 60
o
 Triangle

Divide the sides of an equiangular, equilateral triangle into n equal line segments. Take 
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another arbitrary triangle covering the same area as the first triangle with arbitrary sides and 
internal angles. Each side of the second triangle can be divided into n equal line segments. The 
length of the line segments on one side of the triangle does not have to match the length of the 
line segments on any other side of the triangle as long as they are the same number of line 
segments. Then each side of the second triangle has a one–to–one correspondence with a 
corresponding side of the first triangle. Therefore, any triangle can be represented by  an 
equiangular, equilateral triangle having the same area. Dividing each triangle into smaller 
triangles by connecting the segment ends of one side to the segment ends of the opposite side 
using parallel lines (each side having two opposite sides), then the number of smaller triangles 
in one triangle is equal to the number of smaller triangles in the other triangle. Any arbitrary 
triangle is therefore but a distortion of an equiangular, equilateral triangle. This may be 
advantageous by simplifying the solving of triangular problems.  One such problem is the 
representation of the triangling of a number by any triangle.

Triangling a Number   

Triangles are more basic for measurement than are squares because the triangle is the 
most simple of the polygons. Any number n squared n

2
 = n x n. In Nature's Way of Measuring, 

it is called n triangled, because it is the multiplication of two sides of an equilateral triangle 
instead of the two sides of a square. Dividing all sides of a square by n and connecting each 
point to its opposite point with a line, the square is divided into n

2
 (squared) squares. If the 

sides of an equilateral triangle are divided by n, and each point is connected to its two opposite 
points (at 60

o 
angles) with a line, the triangle is divided into n

2
 (triangled) triangles. The 

number n has been triangled.

The Area of a Triangle

The square of a number n, n2, has a one–to–one
correspondence with the triangle of the number n, n2. Dividing a
square into n2 similar squares, is the same number when you
divide an equilateral triangle into n2 similar triangles. In the
figure, 42 = 16 triangles. The  triangle of a  number is the area of
an equiangular equilateral triangle. This can be generalized into
any triangle. Also, if nm is the area of any rectangle, then ½ nm is
the area of any triangle where n is the base and m is the height of
the triangle. But if we substitute the irregular triangle with its
equivalent area equilateral triangle, taking n as the divisor of any
side, then ½ nm ≈ n2. ½ nm is in squares, but n2 is in triangles. So
the area of any triangle can be expressed as n2.

Finding the Triangular Root of a Number 
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Let an equilateral triangle be divided into  n2 similar triangles. By the definition of 
triangling a number n, each side of the triangle is divided into n parts. Therefore, the triangular 
root √(n2) = n. Now if t = n2, then √t = n.    The triangular root of t is equal to n, where t is the 
number of similar triangles within an equilateral triangle with sides measuring n units. The 
triangular root becomes the scale of any triangle.

The Equation of a Triangle

A vector is a directed line segment and will be represented as a bold
faced letter, for example a, b, c or x, y, z. The addition of two vectors x and
y is x + y = z. This is also the equation of a triangle. This equation can be
used to find any point on the line segment |z|. In an equiangular, equilateral
triangle, draw a line parallel to |x| from |y| to a point P on |z|. That gives the
coordinate x. Draw a line parallel to |y| from |x| to the point P on |z|. That
gives the coordinate y. x + y = z, where z is the length |z| . The reason this
is so is that both x and y are sides of smaller equiangular, equilateral triangles within the larger 
triangle with one side congruent to and as part of z, the side of the larger triangle. The line 
segment on z above P is congruent to x, and the line segment on z below P is congruent to y. 
These two line segments can therefore be called x and y and add up to z, or the length |z|. (This 
will work with any triangle and is called generalizing the coordinates.)

Is Z an Imaginary Number?

In order to talk about 2–dimensional measurement, we must first talk about imaginary 
numbers. In Nature's way of measuring there is no imaginary numbers. Traditionally, √(–1) is 
given the symbol i, and an imaginary number z = a + ib. (Some authors use j.) But the number  
a + ib can be represented as the number a + b or as the ordered pair (a, b) or (x, y) which is so 
similar to z = x + y that all references to imaginary numbers a + ib will be referred to from now 
on as a + b or x + y, both of which is the imaginary number z or the coordinate z or a point (x, 
y) on the line z. If x, y, and z are unit vectors, then cz = ax + by or c|z = a|x + b|y (the z, x, y parts
of a number) are also replacements of the imaginary number z = a + ib.  

The logarithmic representation of a + ib is reiq. Since we are representing a + ib as a + b, 
then reiq can be replaced with req. When q = wt, then a + b = rewt and is a vector rotating in a 
counterclockwise rotation with an angular velocity of w . For addition, a + b is used, and for 
multiplication, req is used so the exponents only need to be added. 

The complex number a + b can also be written as (cos q + sin q ) 
where a =  cos q and b = sin q . Also, eq  = (cos q + sin q ) and therefore, 
req  = r(cos q + sin q ). The conjugate of  z  is – y – x, and the conjugate of 
– z  is y + x. A complex number is defined as the endpoint of any vector, 
and a complex plane, any plane in which a vector is drawn from the origin 
out to the z–axis. If you plot a complex number or a vector in the complex 
plane ( in other words, a plane in which a vector is drawn), then r will be 
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the distance from the origin to the point on the z axis and q will be the angle the vector makes 
with the x–axis. 

DeMoivre's Formula1

DeMoivre's formula is the following:

(Cos(q) + iSin(q))n  = Cos(nq) + iSin(nq) where 0o ≤ q ≤ 90o. 
Using a variation of this formula, let us use 

(Cos(q) + Sin(q))n  = Cos(nq) + Sin(nq) where 0o < q ≤ 60o. 

This formula is useful when you have a complex number and want to raise it to some 
power without doing a lot of work.

Write the complex number req as rCos(q)+rSin(q) and raise it to a power n. 

Essentially what you are doing is taking a complex number of the form 

1–Taken from Doctor Benway, The Math Forum at  http://mathforum.org/dr.math/  

a + b, and 
converting it to the form 

req, 

raising it to a power in that form, then converting back to the first form.  Observe:
(rCos(q) + rSin(q))n  = (r(Cos(q) + Sin(q))n   

                                                              = (rn )(Cos(q) + Sin(q))n  
                                                             = (rn )(eq)n  
                                                              = (rn )(enq)
                                                             = (rn )(Cos(nq) + Sin(nq))

Of course knowing DeMoivre's formula allows us to go straight from 

                                                           (r(Cos(q) + Sin(q))n  
to 

   (rn )(Cos(nq) + Sin(nq)).

Tetrahedral Roots of Numbers as Planes1,2 

It will be found that the 3–dimensional manifold of a 60
o
 coordinate system can be 

obtained from a 90
o
 coordinate system using cubic roots and translated into tetrahedral roots of 

a system.
1–Taken from Doctor Anthony,  The Math Forum  at  <http://mathforum.org/dr.math/>   

2–The trigonometry  here is based upon the hexagon and a 60
o 
cycle.  
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If x3 = N, where N is some expression (which could be a constant), then you have a 
third degree equation, so there must be three roots. 

Suppose  z3 = 8, z being a complex number. Now taking the tetrahedral root of each 
side (as if each edge of the tetrahedron with volume of 8 is divided into 2) you have z = 2, 
however, there are two other tetrahedral roots for this equation.

Let z3 = 8(1 + 0).

(Remember that  0o < q ≤ 60o)

But since Cos(6k) = 1 and Sin(6k) = 0  where k is any integer,  we could write the 
equation as

                                                            z3 = 8(Cos(6k) + Sin(6k)).

Take the tetrahedral root of both sides, and use DeMoivre's theorem which shows that:
                                                                

      z = [8(Cos(6k) + Sin(6k))]1/3

         z = [81/3(Cos(6/3k) + Sin(6/3k))]
                                                             z = 2[Cos(2k) + Sin(2k)]
Letting k = 0, 1, 2,  
                                         
                                          k=0 gives  z1 = 2[(Cos(0) + Sin(0)]  
                                                                = 2(1 + 0) = 2(1, 0) 
                                                                = 2|x    (the one real root along the x–axis)
                                          k=1 gives  z2 = 2(Cos(2) + Sin(2)) [2 is 1/3rd of a cycle of six.]
                                                                  = 2(– 1  + 1) = 2(– 1, 1)  
                                                                = 2|y   (along the y–axis)
                                          k=2 gives  z3 = 2(Cos(4) + Sin(4)) [4 is 2/3rd 's of a cycle of six.]
                                                                = 2(– 1  – 1) = 2(– 1, – 1) 
                                                                = 2|z   (along the z–axis)

So, if z3 = 8, we have the three roots of 2|x , 2|y and 2|z, each 2 being on one of the three
axes. If we give k more values, 3, 4, 5, … we simply repeat the three roots already found.   

Let's do this over again, except this time, using imaginary numbers. First, we use one 
half of a unit equiangular, equilateral triangle. The height is (√3)/2, and the base is ½. Using 
the Pythagorean Theorem, the hypotenuse then is, 

√(((√3)/2)2 + (1/2)2) = 1. 

So, if z3 = 1, then z3 = (– ½ +/– ((√3)/2))  

because half  the vertical length between 1|y  and 1|z is √3/2, and
the horizontal length between that line and the imaginary axis is
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½.   Then,  if z3 = 8, we get 

z3 = – 2 +/– 2√3 . 

The 2| y component is + 2√3, and the 2|z component is – 2√3, with the x component as 2. (The 
2|– z component would be + 2√3; the 2|– y component would be – 2√3, with the – x component as
– 2.) 

The unit vectors of   x, y, and  z form a basis for the 60
o
 coordinate system. 

The Interface Between the  90o coordinate system and the 60
o
 coordinate system

   Referring to the 60
o
  x, y, z triangle to the right, in the  90o coordinate system sin 60

o
 = 

(√3)/2 and is the height of the y coordinate shown in the tetrahedral 
solution of z3 = 1 to the left as y'. cos
60

o
= ½ and is shown as x1. The solutions

of  z3 = 1 are shown as y, – z, and xo. In
the 60

o
 coordinate system, – z = 2x1 = 1

as shown in the figure to the lower right.

In the  90o coordinate system, the y–axis
is perpendicular to the x–axis, but in the
60

o
 coordinate system, the y–axis is at

60
o
 to the x–axis. An equilateral triangle extends from the endpoint of r, the sides of which is y 

with the height being y'. Call this the y triangle. The x triangle sits on top of that, the sides of 
which are xo. The sides of the x and y triangles enclose a parallelogram in which r is the 
diagonal. The angle of r is q and changes as r is rotated clockwise or counterclockwise. 
Likewise, the opposite angle f also changes as r rotates.  The 120o angle between q and f 
remains a constant as r rotates up or down because the adjacent 60

o
 angle remains constant. 

Now a vector from the origin of this 90
o
 coordinate system has an end–point (x, y). We can use 

this end–point (x, y) to refer to a vector. If we denote this end–point as a complex value of the 
tetrahedral root of a number, and remembering that a vector retains its original values during a 
translation, in other words, it can be moved anywhere as long as the length and angle remain 
constant, these 3 complex values as vectors can be translated to become the sides of an 
equilateral triangle. In the above figure, y = √ (y'2 + x1

2) which is √(((√3)/2)2 + (1/2)2) = 1  in 

the 90o coordinate system,  and | – z| = xo + y in the  60
o
 coordinate system. If |y| = 1, then | – z| 

= 1 by the same reason using the Pythagorean theorem, and |xo| = 1 by reason of the solution to 

z3 = 1, which converts the  90o coordinate system into the  60
o
 coordinate system and visa 

versa. The y coordinate is the key to this transition. This is shown as you
obtain the  60

o
 coordinate system from the solution of  z3 = 1.

If you represent the three roots of z3 = 1 on a 90o coordinate system
that has real values along the x axis and imaginary values along the y axis,
the three roots will appear as the three spokes of a wheel, with the complex
“z” values lying on a circle of a unit radius. One root will lie along the
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positive x axis, and the other two at +120
o 
 and    – 120

o  
to the x value on the x axis. So the 

roots are symmetrically spaced round the circle. In fact this is always the way that tetrahedral 
roots of a real number will look. If you take the tetrahedral root of an imaginary number, say i, 
then you still get three spokes but they will be rotated to lie along the 60

o
, 180

o
, and the 300

o 

lines on the unit circle. Still, each of the  axes are 120
o
 apart from each other.

             
             becomes        

Therefore, the tetrahedral roots of a number can be represented as a triangle having three 
axes x, y, and z having a counterclockwise rotation, which will be defined as a bivector later 
on. A number tetrahedroned becomes a bivector. Using the tetrahedral roots we can create a 
60

o
 coordinate system. The tetrahedral roots of 1 gives us a unit triangle, then the roots of 2 and

then 3, etc., give us a scale along the y and x axis with the z axis becoming longer and longer as
it steps away from the origin (where the x and y axes touch). The tetrahedral roots of 1 become 
the basis for the 60

o
 coordinate system. In other words, for the x, y and z axis, the bases are 1|x, 

1|y, and 1|z,  and for the – y, – x, and – z axes the bases become –1|– x, –1|–y , and –1|– z .

Generalizing, let these vectors of  x, y, and z be only half of the

axes of a hexagon. They have the angles of 0o, 120o and 240o. Then

the other axes – y, – x, and – z are at 60
o
, 180

o
 and 300

o 
respectively.

This system of vectors form a basis for and defines the 60
o
 coordinate

system. These axes form a hexagon. It becomes a projection of the  x,
y, z, 90

o
 coordinate system onto an imaginary plane made up of six

vectors, three positive and three negative. These vectors can be
translated into two bivectors, each going in opposite directions, the x,
y, z going in the counterclockwise direction, and the – y, – x,  – z going in the clockwise 
direction and being a conjugate of the first. The resultant direction will then be null, showing 
the resultant vectors of the coordinate system are null and static. 

Two Different Types of Coordinate Axes
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At this point, it may be confusing, because the
above coordinate axes is not the one I've been using
thus far.  For computational purposes and when it is
desired to speak only of the positive space within the
60

o
 coordinate system, we take the modulus form of the

x, y and z axes above to the left to form a triangle
whose base vectors are linearly dependent. In other

words, z = x + y . We will subsequently use the form z = x + y unless we
are talking about bivectors.  Then we will use the form on the right. (It may be remembered that
z = x + y is the equation of a triangle, and  z = x + y gives the x and y coordinates.)

Synergetics Coordinates 1

Synergetics coordinates are a set of 
triangular coordinates set within an equilateral
triangle where each coordinate is located on
the side of the triangle. Any point (x, y, z)
within the triangle can be located by the use of
these coordinates. Each coordinate is located
120o from the other two coordinates. This is a
projection of the 90o coordinate system into a
60o coordinate system. 

This coordinate system can be extended into a wider plane made up of
equilateral triangles.

These coordinates can be extended
 to 4 dimensions (x, y, z, t) within a
 tetrahedron where 4 planes intersect at
 one point. 

The vertices of the triangle are generally (a,b,c) where any
two of the coordinates are equal to 0, viz. (a, 0, 0), (0, b, 0), and (0, 0, c).
These are generated by moving the  inside point to each one of the
vertices.  This property also holds when the coordinates are generalized
to 4 and higher dimensions.
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The sum of the coordinates |a + b + c| is 
equal to one of the sides of the equilateral triangle.
(Note: |a + b + c| is equal to any one of the lines 
from the middle of a side to the opposite vertex. It 
is also equal to the general coordinate x = c, a 
constant, but all straight lines from any side of the 
triangle ending up at the opposite vertex are are 
interpreted as having equal length and are parallel,
just as all lines going through both poles of a 
sphere are parallel. This is also because we are 
dealing with ratios. There is a one-to-one 
correspondence of the area of an equilateral 
triangle to the equal area of a square. So all (polar)
parallel lines in the triangle are proportional to the 
set of parallel lines within a square of the same 

area. 
1 http://mathworld.wolfram.com/SynergeticsCoordinates.html 

As the equilateral triangle is a member of a hexagon, the length of any one side of 
the equilateral triangle is equal to the radius of the circle enclosing that hexagon.

Triangular Coordinates 2

Synergetics coordinates can be generalized into
what is called Triangular coordinates.
(Note: The equilateral triangle has a one-to-one
correspondence with the generalized triangle.) 
The point P inside the triangle ABC is an ordered
triple of numbers, each of which is proportional to the
distances from P perpendicular to each one of the
sides of the triangle. This triple of numbers are the
coordinates of P and are known as either
homogeneous coordinates or  
trilinears by Plucker in 1835 and denoted by α:β:γ or
(α,β,γ). Only the ratio of the distances are significant
and are obtained by multiplying a given triplet α:β:γ by any non-zero constant μ. Therefore, 
α:β:γ => μα:μβ:μγ. 
For simplicity, the three polygon vertices A, B, and C of a triangle are commonly written as 
1:0:0, 0:1:0, and 0:0:1, respectively. 
(Note: that would be for a unit triangle. Generally, they would by x:0:0, 0:y:0, and 0:0:z. )

Trilinear Area

Trilinear coordinates can be normalized so that they give the actual directed distances 

http://mathworld.wolfram.com/SynergeticsCoordinates.html
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from P to each of the sides. To perform the 
normalization, let the point P have trilinear coordinates 
α:β:γ and lie at distances a', b', and c' from the sides BC, 
AC, and AB, respectively. Then the distances a'=kα, 
b'=kβ, and c'=kγ can be found by writing Δa for the area 
of ΔBPC, and similarly for Δb and Δc. We then have

Δ = Δa + Δb + Δc

    = 1/2a'a + 1/2b'b + 1/2c'c (in other words, Δ = 1/2hb)

    = 1/2(kαa + kβb + kγc)

    = 1/2k(aα + bβ + cγ).

So k = (2Δ)/(aα + bβ + cγ), 
where Δ is the area of ΔABC and a, b, and c are the lengths of its sides (Kimberling 1998, pp. 
26–27). To obtain trilinear coordinates giving the actual distances, take k = 1, so we have the 
coordinates a':b':c'. (Note: for an equilateral triangle, coordinates are automatically a':b':c'.)
2 http://mathworld.wolfram.com/TrilinearCoordinates.html

These normalized trilinear coordinates are known as exact trilinear coordinates.

The trilinear coordinates of the line
ux + vy + wz = 0 
are
u:v:w = a dA : b dB : c dC, 
where di is the point–line distance from vertex i to the line.

The homogeneous barycentric coordinates corresponding to trilinear coordinates α:β:γ are (aα, 
bβ, cγ), and the trilinear coordinates corresponding to homogeneous barycentric coordinates (t

1
,

t
2
, t

3
) are t

1
/a:t

2
/b:t

3
/c.

Important points α:β:γ of a triangle are called triangle
centers, and the vector functions describing the location
of the points in terms of side length, angles, or both, are
called triangle center functions f(a, b, c). Since by
symmetry, triangle center functions are of the form
f(a, b, c)=f(a, b, c):f(b, c, a):f(c, a, b), 
it is common to call the scalar function f(a,b,c) "the"
triangle center function. Note also that side lengths and
angles are interconvertible through the law of cosines,
so a triangle center function may be given in terms of side lengths, angles, or both. Trilinear 
coordinates for some common triangle centers are summarized in the following table, where A, 

db:c
http://mathworld.wolfram.com/TrilinearCoordinates.html
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B, and C are the angles at the corresponding vertices and a, b, and c are the opposite side 
lengths. Here, the normalizations have been chosen to give a simple form.

triangle center triangle center function
circumcenter O cosA
de Longchamps point CosA – cosBcosC
equal detour point sec(1/2A)cos(1/2B)cos(1/2C) + 1
Feuerbach point F 1 – cos(B – C)
incenter I 1
isoperimetric point sec(1/2A)cos(1/2B)cos(1/2C) – 1
Lemoine point L a
nine–point center N cos(B – C)
orthocenter H cosBcosC
triangle centroid G cscA, 1/a

Trilinear Sidelines

In trilinear coordinates, the coordinates of the vertices are 1:0:0 (A), 0:1:0 (B), and 0:0:1 (C). 
Extensions along the sidelines by a distance d have trilinears as illustrated above.

Trilinear Coordinate Sides

Trilinear coordinates of points fractional distances ka, kb, and kc along the sidelines are given 
in the above figure, where ki' = 1 – ki.

A point located a fraction k of the distance along the sideline AC from A to C has trilinear 
coordinates (1 – k)/a:0:k/c. 

Trilinear Coordinates
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To determine the conversion of trilinear to Cartesian coordinates, orient the triangle with the 
BC axis parallel to the x–axis and with its incenter at the origin, as illustrated above. Then
x = (kβ – r + (kα – r) cosC) / (sinC)
y = kα – r,
where
r = (2Δ) / (a + b + c), 
is the inradius, Δ is the triangle area, and
k = (2Δ) / (aα + bβ + cγ) 

(Kimberling 1998, pp. 31–33).

More generally, to convert trilinear coordinates to a vector position for a given triangle 
specified by the x– and y–coordinates of its axes, pick two unit vectors along the sides. For 
instance, pick
a = [a

1
; a

2
]

c = [c
1
; c

2
],

where these are the unit vectors BC and AB. Assume the triangle has been labeled such that A 
= x

1
 is the upper rightmost polygon vertex and C = x

2
. Then the vectors obtained by traveling la

and lc along the sides and then inward perpendicular to them μst meet
[x

1
; y

1
] + l c[c

1
; c

2
] – kγ[c

2
; – c

1
] = [x

2
; y

2
] + l a[a

1
; a

2
] – kα[a

2
; – a

1
]. 

Solving the two equations
x

1
 + lc c

1
 – kγc

2
 = x

2
 + la a

1
 – kαa

2

y
1
 + lc c

2
 + kγc

1
 = y

2
 + la a

2
 + kα a

1
,

gives
la = (kα(a

1
c1

1
 + a

2
c

2
) – γk(c

1

2+c
2

2) + c
2
(x

1
 – x

2
) + c

1
(y

2
 – y

1
))/(a

1
c

2
 – a

2
c

1
)

lc = (kα(a
1

2+a
2

2) – γk(a
1
c

1
 + a

2
c

2
) + a

2
(x

1
 – x

2
) + a1(y

2
 – y

1
))/(a

1
c

2
 – a

2
c

1
).

But a and c are unit vectors, so
la = (kα(a

1
c

1
 + a

2
c

2
) – γk + c

2
(x

1
 – x

2
) + c

1
(y

2
 – y

1
))/(a

1
c

2
 – a

2
c

1
)

lc = (kα – γk(a
1
c

1
 + a

2
c

2
) + a

2
(x

1
 – x

2
) + a

1
(y

2
 – y

1
))/(a

1
c

2
 – a

2
c

1
).

And the vector coordinates of the point α:β:γ are then
x = x

1
 + lc[c

1
; c

2
] – kγ[c

2
; – c

1
]. 

A Simpler Way of Looking At Trilinears

First, there is a one-to-one correspondence between
general triangles and equilateral triangles. General triangles are
warped equilateral triangles. The coordinates of P are (x, y, z),
and the coordinates of the vertices are (x, 0, 0), (0, y, 0), and (0,
0, z). These are points P when taken to the vertices. Each of
these coordinates of P can be transferred to an equilateral
triangle, and the ratios remain invariants. 

If side AB is divided into kc and k'c, 
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BC is divided into ka and k'a,
CA is divided into kb and k'b, 

by the lines a', b' and c' going from a vertex to the opposite line, 
let kc = x and k'c = z,
ka = x and k'a = y,
and kb = y, and k'b = z,

then, a = x + y, b = y + z, and c = x + z. 
The sum |x + y + z| = any side or line going from a vertex to its opposite side. This is so 
because each side of a general triangle is divided into the same number n intervals, and we are 
dealing with ratios, not the actual measurements which involve sins, cosins, etc. 

When working with a generalized triangle, divide the sides into n intervals and use an 
equilateral triangle with the same divisions on its sides. In other words, make all measurements
as if the general triangle is an equilateral triangle. 

For 2 dimensions, any distance is only c = a + b. 
For 3 dimensions, t = (a + b + c) – (a' + b' + c'). 

         t = (a – a') + (b – b') + (c – c').

The Traditional Way of Measuring the Area of a Circle

The polygon can be broken down into n isosceles triangles (where n is
the number of sides), such as the one shown on the right.

      In this triangle
s   is the side length of the polygon
r   is the radius of the polygon and the circle
h   is the height of the triangle.

The area of the triangle is half the base times height or 

There are n triangles in the polygon so 

This can be rearranged to be 

The term ns is the perimeter of the polygon (length of a side, times the 
number of sides). As the polygon gets to look more and more like a circle, 

this value approaches the circle circumference, which is 2πr. So, substituting
 2πr for ns:

Also, as the number of sides increases, the triangle gets narrower and narrower, and so when s 
approaches zero, h and r become the same length. So substituting r for h:
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Rearranging this, we get

 .
from(http://www.mathopenref.com/circleareaderive.html)

The Natural Way of Measuring a Circle

If this hexagon /coordinate system is circumscribed where each 
corner of the hexagon touches the perimeter of a circle, we can get rid of π 
also. The hexagon provides 6 chords that divides the circle into 6 arcs. 
Instead of trying to lay the radius of the circle out across its circumference 

where it covers an incomplete number of times, it is more logical to just divide the circle into 6 
to describe a cycle or a part of a cycle. Therefore, the trigonometric functions do not depend 
upon π, but upon a rational number. An example has been given of using one geometric shape 
to calculate the volume of another geometric shape. It may be possible to do that with other 
shapes such as the circle and sphere. The secret is to use the unit triangle or the unit 
tetrahedron.                                                                                       

The traditional way of measuring the area of a circle is to use π . For a unit circle, r = 1, 
the conventional area is πr2 or π = 3.14159. Multiplying this by the synergetics constant for 2 
dimensions, 3.14159 x 9/8 = 3 ½ squares. That's changing it from irrational to rational. The 
area of a unit equilateral triangle (each side is equal to one) is ½ hb = ½ x (√3)/2 x 1 = (√3)/4 
= .433013 squares/triangle. To change the 3 ½ squares to triangular units, take the reciprocal of
.433013 squares/triangle, which is 2.309401 triangles/square.

 Multiplying the unit circle of 3.14159 squares by 2.309401 triangles/square, we get 
7.255197 or 7 ¼ equilateral triangles. (Multiply .255197 by 16 or 32 and you get ¼.) So each 
unit circle is 7 ¼ triangles. The space between the 6 chords of the hexagon encased by the 
circle and the 6 arcs of the circle over the hexagon is 7 ¼ – 6 = 1 ¼  equilateral triangles. 
Area = 7 ¼ r2 triangles for any circle.
       There is no π involved!

The circumference of a unit circle is defined as 6 arc lengths, being based upon the 
chords of the inscribed hexagon instead of on p . The formula for this circumference is 2pr. 
One arc length is equal to 2 p r/6. When r = 1, 2 p r/6 = 1.047197. Multiplying that by the 
conversion factor of 1.06066, we get an arc length of 1.110720 or just 1.  So let p = 3, and, 
generally speaking, one arc will be 1r so the circumference will be 6r arcs. 

It has been discovered that each circle has 7 ¼ equilateral triangles no matter what the 
radius is equal to. A circle's area of the next higher integral radius or frequency is just r2 x 7 ¼. 
Here are some examples.

http://www.mathopenref.com/circleareaderive.html
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Circle 
of 

Radius R or
Frequency

Area in Squares
of One

Equilateral
Triangle in the

Hexagon  

&Number of
Unit Equilateral
Triangles in One

Sixth of the
Hexagon

Number of
Equilateral
Triangles 
in a Circle
Equals 

Area in Unit
Equilateral
Triangles

R = 1 /4 12 = 1     x 7 ¼  = 7 ¼

R = 2 2
2
 =  4     x 7 ¼  =   29  *

R = 3 9 /4 3
2   =  9     x 7 ¼  = 65 ¼ 

R = 4 4 4
2  = 16    x 7 ¼  =   116  #

*surface area of unit sphere  (4 great unit circles are used to find the surface of the sphere)
#surface area of sphere with r = 2 
&Each major triangle in a hexagon is split into r2 unit triangles. These are the triangular 

numbers.

The triangular area of a circle divided by its radius triangled r2 gives you the number of 
equilateral triangles within the circle, which is always 7 ¼. That is, there are always r2 of them. 
So the new equation of the area of a circle without using p is A circle = 7 ¼r

2  
triangles.

It is notable that the radius triangled is the number of unit equilateral triangles or unit 
areas inside one sixth of the hexagon inscribed by the unit circle because that is the definition 
of triangling a number or the triangular root of a number being the area.  

 
Using Nature's Way of Measuring, the unit of measure for area is only one unit 

equilateral triangle. 

Surface Area of a Sphere

Since the surface area of a unit sphere is 4 great circles times the area of one of the great 
circles, 4 x 7 ¼ = 29 is the surface area of a unit sphere in equilateral triangles. Then the 
surface area of any sphere is 29r2 . 

The Relationship Between Perimeter and Area

The triangle comes in many shapes and sizes, yet each triangle has an area, a perimeter, 
and a height. For any given area, a triangle can be stretched horizontally, vertically, or 
diagonally and keep the same area. Only the shape is changed. Therefore, any triangle with a 
given area can be represented by an equilateral triangle having the same area. Dividing each 
side of that equilateral triangle into x equal segments, x2 is equal to the area s of the triangle 
and the triangular root √s of the area s is equal to the number x. When each point of division 
between each segment on one side of the triangle is connected to its corresponding point in 
straight lines to each opposite side (and this is done for each side), the area s of the triangle is 
divided into x2 similar equilateral triangles. Therefore, the perimeter  p of the equilateral 
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triangle is equal to three times the triangular root of the area s of the triangle, i.e.  p = 3 √x. 
There being a one–to–one correspondence between the points on the perimeter of the 
equilateral triangle to any other triangle, the perimeter of any triangle is equal to three times the
triangular root of the area of that triangle. 

This relationship between the area of the triangle and its perimeter can be extended to all
polygons regular and irregular. Each polygon can be divided into triangles. Regular polygons, 
into similar triangles. So from a single triangle with a perimeter of p = 3 √s, going outward 
from the center of any polygon to the perimeter,

for a square,       p = 4√s,
for a pentagon,  p = 5√s,
for a hexagon,   p = 6√s,
and so on for any regular  polygon of n sides,  p = n√s.

This is talking about the number of divisions x = √s on each side of the polygon and not 
the length of each division, so p = nx. 

Quadratic Equations = Areas

Completing the square is one way to solve quadratic equations. This was done anciently 
by the Greeks in a process of  increasing the area of a square by adding unit width rectangles to
two sides of the square in such a way that the overlapping rectangles created a smaller square 
connected to the corner of the original square. 
                                                                                            

  For example, the resulting quadratic equation  y = (x + 4)2 comes from 
y = x2 + 8x + 16. Starting with the original square, x2 , we add 2(4x)'s or two rectangles 

with the dimensions of 4 and x, that is, adding the four rectangles with dimensions of 1 and x to
two sides of the square such that they overlap in a square having the area of 16 unit squares. 
Thus, the resulting square has an area of 16, resulting in the equation 

 x2 
+ 8x + 16 = 0. 

Now the equation can be solved for x. But this equation was obtained by completing the square
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of another equation,  
y = x2 

+ 8x  or   
x2 

+ 8x – y = 0. 
Adding y to both sides and adding the square of ½ 8 to both sides, that is, 42 = 16,
        x2 

 + 8x + 16 = y + 16, and solving for x, Generalizing this, 
       (x + 4)2 

= y + 16,         ax2 + bx + c = 0 divide by a
                    x + 4 =  +/– √(y + 16)     x2 + bx/a + c/a = 0   add b2/4a2 to both sides

                           x = – 4 +/– √(y + 16)           x2 + bx/a + b2/4a2 = b2/4a2 – c/a
Proof: x

2 
 + 8x + 16 = (x + 4)

2 
                   (x + b/2a)2 = b2/4a2 – c/a

                                             x + b/2a =  +/– √(b2/4a2 – c/a )
     x  = – b/2a +/– √[(b2 – 4ac )/4a2 ]

                                      x = [– b +/– √(b2 – 4ac )]/2a
        
         The General equation x2 + 2xy + y2 = 0 represents adding a smaller square y2 sharing the

same diagonal as the larger square x2 where the 2xy represents the rectangles added to the side 
and bottom of the larger square overlapping to form the y2. 

The Area of a Parallelogram

In the 90o coordinate system, the area of a parallelogram is the base times the height, one 
being perpendicular to the other. In the 60o coordinate system, the height and the base are 
orthogonal, so the area of a parallelogram is xy which is a multiple of the area y2. In fact, 

xy = 2ny2 . Add y2 to both sides.
   xy + y2 = 2ny2 + y2, 

which is a horizontal segment of a triangle,  Δx2, so
         Δx2 = 2ny2 + y2, and
         Δx2 = y2(2n + 1).

The algorithmic method uses the triangular numbers to come up with the area of a 
parallelogram.

   (x1 = x) => y2 ,  
 (x2 = 2x) => 3y2 ,
 (x3 = 3x) => 5y2 ,
  :        :          :
 (xn = nx) => y2(2n – 1), but then,

           (xn+1 = x(n + 1)) => y2(2n + 1). Now, 
Δx2 = y2(2n + 1), but subtract one y2 , and you get
  xy =  Δx2 – y2, so
  xy = y2(2n + 1) – y2, and 
  xy = 2ny2 .
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Completing the Triangle

Starting with the general equation Ax2 + Bx + C = 0, divide both sides by A to get
x2 + Bx/A + C/A = 0, then subtract C/A from both sides 

 x2 + Bx/A =  – C/A
Then let Bx/A = y2  and – C/A=K, so we have     x2 + y2 = K.

In order to complete the triangle, note 
that a parallelogram must be added to the
volumes  x2 and y2, adding it to both sides of
the equation. Call this volume P. So now we
have x2 + P + y2 = K + P. 
But   x2 + P + y2 = (x + y)2, so we have

   (x + y)2  = K + P, and 
       x + y =  √(K + P). Solving for x,

   x =  – y +/– √(K + P)

Letting K = x2 + y2, and P = xy, note that √(K + P) = √( x2 + xy  + y2 ) where x2 + xy  + y2 
= (x + y)2 = z2 so that √z2 = z = x + y which we are well familiar with by now.
Also, x can be solved from √(K + P).

   √(K + P) = √(P – C/A) ; P = xy and K = – C/A.
    z  = √(xy – C/A)
    z2 =  xy – C/A
   xy = C/A +  z2

     x = (C/A + z2)/y

For any quadratic equation x =  – y +/– √(K + xy), x =  – y +/– √(K + 2ny2). Also, x = – y +/– z.

Now that I have given a logical solution, let me give a more practical solution. Instead of
adding a parallelogram to both sides of the general equation  x2 + Bx/A =  – C/A, let y = B/A 
and add y2 to both sides. So, starting with Ax2 + Bx + C = 0, divide both sides by A to get

           x2 + Bx/A + C/A  = 0, then subtract C/A from both sides. 
  x2 + Bx/A =  – C/A Now add y2 to both sides.

         x2 + xy + y2  = y2  – C/A. Let – C/A= k.
In the 90o coordinate system,  (x + y)2  =  x2 + 2xy + y2, but in the 60o coordinate system,

        (x + y)2  =  x2 + xy + y2, so
     (x + y)2  = y2  + k,
         x + y = +/– √(y2  + k), 

     x = – y  +/– √(y2  + k), then
      x = – B/A  +/– √(B2/A2  – C/A)

     x = – B/A  +/– √[(B2  – AC)/A2]
     x = [– B +/– √(B2  – AC)]/A
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In the 90o coordinate system,   x = [– B +/– √(B2  – 4AC)]/2A, so we can see that using a 
60o coordinate system does simplify even the quadratic equation. This is because of a different 
way of multiplying binomials. Instead of (x + y)2 = xx + xy + yx + yy, in the 60o coordinate 
system, (x + y)2 = xx + xy + yy. Again, it is because  x2, y2 are considered equilateral triangles, 
and xy is a parallelogram where x and y are 60o apart and are orthogonal. So there you have it.

Comparing a Triangle to a Square

We can use a square such that one side z = x + y,
dividing the length z into two other lengths x and y, we can
have a representation of area using xy. 

The area z2 = xz + xy + y2. 

This square and the equilateral triangle have one side
that is an equivalence relation of  z = x + y. That is, they both
represent this same equation. But only two areas within the
square have an equivalent area within the triangle, i.e., xy and
y2. 

xz ≈ x2 , xy = xy, and y2 = y2.

The Binomial

Let's now talk about the binomial (x + y)2. Remember that
z = x + y, so 

          (x + y)2  =  z2  , and taking the triangular root of both sides,    
           z =  √( z2 )  

The triangular root of an area is a line. So if a binomial is an area, the triangular root of it
is a line. Therefore, taking the triangular root of a number is changing it from an area to a line, 
whether it is (x + y)2 or  (xy)2 .  Thus, taking an ordinary second degree equation representing 
something in two dimensions, taking the triangular root changes it to one dimension. It would 
seem that a similar operation on three dimensions such as a cube would flatten the three 
dimensions into two-dimensional space such as a hexagon which has six equilateral triangles 
with axes x, y, and z. The three axes inside a hexagon represent the three spacial dimensions of 

the cube. 

Changing the signs of the binomial will give you three 
divisions of the hexagon. 
You can access the
(x, y, z) division in the (x + y)2 and (y + z)2 binomials, the 
(– x, – y, z) division in the (z – x)2 and (– x – y)2 binomials, and the
(x, y, – z) division in the (– y – z)2 and (x – z)2 binomials. Thus,
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 z = √(x + y)2  
x = √(y + z)2

       – y = √(z – x)2 
 z = √(– x – y)2 

       – x = √(– y – z)2  
          y = √(x – z)2 

Taking the triangular root of a binomial is the equivalent of changing two dimensions 
into one of the dimensions of three dimensional space.

Binomial Theorem

The binomial theorem states that

 

where =  C(n, n – x) = (n!/(n – x)!x!),

or equivalently,                                                                     .

But according to the definition (x + y)2  = x2 + xy + y2, where n = 2 and x = 1,  the 

binomial theorem for the 60o coordinate system becomes  (a + b)n  =                    an – x bx.

For n = 1 and x = 0, (a + b)n  = a.

For n = 2 and x = 1, (a + b)n  = a2 + ab + b2. 
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Chapter Four

Linear Measurement
 

Towards a Formula for Distance
Given any line z from point a to point b, that line can be divided into two segments x and

y. Define the length of the line to be z. Therefore, the distance from a to b must be z = x + y. 
This is the formula for distance in its simplest form. 

To prove it, let us use the equilateral triangle. Label the sides x, y, and z. Take a line x0 
from y to z parallel to x and take a line y0 from the intersection of x0 and z to x parallel to y. 

Because x0 and y0 form two other equilateral triangles within the 
encompassing equilateral triangle, in which one triangle has all sides equal 
to x0 and the other equilateral triangle has all sides equal to y0, z is 
therefore divided into two segments x0 and y0 on each side of  a point P(x0, 
y0) on line z. The two line segments x0 and y0 add up to form z, so that x0 + 
y0 = z. x0 and y0  are called the coordinates of P on z. 

We must therefore conclude that for any line segment z from a to b, 
having a point P, the distance from a to b is z = x + y where x is the distance from P to a, and y 
is the distance from P to b. 

Theorem: the coordinates of any point P on a line z stretching from a to b are the two line
segments x0 and y0 , the divisions of that line above and below point P( x0 , y0 ). 

Definition: a point on any line z  in a plane is designated as P( x0 , y0 ).

Corollary: the two dimensional coordinates of any point P on a line z when z is a side of 
an equilateral triangle is the line x0 parallel to x from y to P and the line y0 parallel to y from P 
to x.          

Linear Dependence
                                                                                                       

The gathering of all lines parallel to each of the sides of 
an equilateral triangle forms a grid of x-lines (parallel to the x-
axis), y-lines (parallel to the y-axis), and the z-lines (parallel to 
the z-axis. Then each point within the equilateral triangle is 
where each x-, y-, and z-line cross. This forms a linear space in 
which the components are linearly dependent as z = x + y. Any 
vector is a combination of the other two.

Another way to  define a point on a plane, let z/c = ax + by. For any divisor c, there are 
numbers a and b such that z is the side of any sized equilateral triangle. c = 1/a or 1/b. In other 
words, c = 1/a as b approaches 0 and c = 1/b as a approaches 0. c as a constant becomes a + b . 
As a increases towards c, b has to decrease towards 0, and as b increases towards c, a has to 
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decrease towards 0. c produces all the ranges of z having a point P(x, y), and thus, all points 
within the equilateral triangle from z > 0 to z < ∞ .

Linear Independence

There are three lines within an equilateral triangle, x = k, y = k, z = k, where k is equal to
a constant. To generalize, x = a, y = b, z = c.

Other straight lines within a 60
o
 coordinate system deals with the equations  x = mζ + k. 

There are six: 
x = by + k, x = cz + k, y = cz + k, and
y = ax + k, z = ax + k, z = by + k.

 
These equations also form a linear space which is defined as flat, as the lines they create 

come together and complete the equivalence of equilateral triangles and form the basis for 
isotropic systems. 

Each line from one side to the opposite corner, that is, x = mζ + k, are defined as parallel,
and when all three sets of lines, each group from each side of the equilateral triangle, converge,
each three lines converge on the point P(x,y,z). 

The most basic lines inside an equilateral triangle are the lines which extend from a 
corner to the opposite side. The equations of these lines are x = qζ , where q is a rational 
number. In particular, 
                z = by,                                      x = cz,               and                  y = ax. 

As ζ remains constant, and q increases, x increases,  and as q decreases, x decreases. 

These general equations define a linear space for three
dimensions, that is, within a plane. When these equations are
solved simultaneously, you have a point P(x, y, z) (or the
coordinates) in a linear space. (Note: when four coordinates are
used, we have a linear space–time.) This linear space is
representative of or is isometric to the 90

o
 coordinate system

projected onto a 60o coordinate system. Adding each equation
we come up with z + x + y = by + cz + ax +k or 
2x + 2y + 2z = a + b + c + k or
x + y + z = ½ (a + b + c + k).
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Now if x are three vectors, then ζ  is a matrix. We have X + Y + Z = ½ [a + b + c + k] (where 
each letter represents a column). Each vector is independent from the other two and are 
orthogonal. Therefore, any one vector cannot be a linear combination of the other two and we 
have a linear independent vector space. 

To prove that the lines x = qζ form a linear independent vector space we only have to 
prove that these lines are orthogonal and that the vectors in this space parallel to these lines are 
thus orthogonal. 
First, any and every set of vectors is called pairwise orthogonal if each pairing of them is 
orthogonal. Such a set is called an orthogonal set and any two nonzero vectors in that set is 
always linearly independent. If you have three vectors and any two of them are orthogonal, 
then the three of them form an orthogonal set and form a basic linearly independent vector 
space. 
Second, if every point within the space is defined by three orthogonal lines intersecting, and it 
is true that every point within the space of an equilateral triangle has three orthogonal lines 
x = qζ running through them, then all the vectors within that space that are parallel to  these 
lines x = qζ within this equilateral triangle are orthogonal and thus form a linearly independent 
vector space. 

The length of the lines x = qζ
Now, from the origin O (where x and y come together), draw a line r 

to the point P on z. As the angle θ between r and x approaches 0
o
, r and x0 

approach x and as θ approaches 60
o
, r and y0 approach y. Call x0 and y0 the 

components of r such that the distance r from O to P is

r = 1/2 (x0/cos θ + y0/sin θ)
which is the average of two trigonometric functions.

Let r swing down to x creating an arc s. From the  intersection of s

and x, draw a line l  parallel to z. The resulting triangle thus has sides the
length of r. As P slides down s, the coordinate x0 increases to the size of r,
and the coordinate y0 decreases to zero and r = x0 . As P slides up another

arc s' to the top of l , the coordinate y0 increases to the size of r, and the
coordinate x0 decreases to zero and r = y0 . These actions can be interpreted
as x0 being compared to cos θ and y0 being compared to the sin θ. From

trigonometry we have x = r cos θ and y = r sin θ, and since r = l, l = x/cos θ or l = y/sin θ. But 

these two quantities are not exact, so we take the average of the two to find the length of l. This
gives us the equation of 

r = 1/2 (x0/cos θ + y0/sin θ). 

Let r be the base of another equilateral triangle that has sides x', y', and z'. Rotating r 
crosses z'. Where r and z' cross, there exists a point P(x, y) with coordinates x and y dividing z' 
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into two segments x and y. Since z' is congruent with l and is in fact equal to l, and z' = x + y, 
then r =  x + y. Therefore, any line z or any rotated line r =  x + y. But the point P(x, y) is 

always on l and not on the curve s. 

Since  r = l  and if l = x  + y = z', for a rotating r, where x and y are the segments of l as r 

cuts and divides l, x/x0 = y/y0 .

Note: the perpendicular distance between z' and z is z' – ( cos θ  sin θ) / 2.

Length of an Arbitrary Line Segment

For an arbitrary line segment l drawn at any angle and whose
origin is within the triangle, we draw a line z0 through the lower end of 

l and z1 at the other end of  l parallel to z0. l  divides z0 into (x1  –  x0)
and (y1 –  y0) and divides z1 into (x1  –  x0) and (y1 –  y0). So z0 and z1 are
not only parallel, but | z0 | = | z1 |. (x1  –  x0) and (y1 –  y0) extended
straight across to z1 creates a parallelogram with sides (x1  –  x0) on top

and bottom and (y1 –  y0) on each side with l as the diagonal. The upper
side of the parallelogram (x1  –  x0) is the bottom of an equilateral triangle whose right side is the
upper segment of z1 , and the right side of the parallelogram (y1 –  y0) is the left side of an 
equilateral triangle whose right side is the bottom segment of z1. This z1 is the right side of an 

equilateral triangle with l at the lower left corner. The other end of l is P(x1, y1).

The length of l  can be treated as a vector. The sides (x1  –  x0) and (y1 –  y0) of the 
parallelogram can be added such that 

(x1  –  x0) + (y1 –  y0) =  u + v = l.

Also, (x1  –  x0) + (y1 –  y0) can be treated as the coordinates of the point P(x1, y1) such that 
(x1  –  x0) + (y1 –  y0) = x + y = z1 => r.

Notice that z1  is longer than l and is the same size as a vector r coincident with l .

When r is equal to the edge of the inclosing equilateral triangle, then r overlaps z as r 
rotates through an arc enclosing the chord z. But when r = |x1  –  x0 | + |y1 –  y0 |, then r is the 
radius of a circle, for as it includes both positive and negative values of x and y, it goes beyond 
the barriers of the three axes of the hexagonal plane.
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Relationship Between Length and Area
I had an epiphany. Is there a parallel to the Pythagorean Theorem in the 60o Coordinate 

System? Drawing an angled line within the equilateral equiangular triangle, I wanted to know 
its length. I noticed the different triangles and their relationships with the parallelogram in 
closing the line. 
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I have already come up with the idea that any line segment z = x + y, where x and y are 
the coordinates of any point on z. Then for any rotated line within the equilateral triangle, r = 
1/2 (x0/cos θ + y0/sin θ). Measuring the line I drew, I came up with 3 19/32 inches. Next, I 
measured the two sides of the parallelogram to get 3 inches and 1 inch. Using the Pythagorean 
Theorem, √(32 + 12) = √(10). That doesn't work. But what I do know is that 

z = x + y, and 
z2 = (x + y)2 , but

(x + y)2  = x2 + xy + y2. 
One of the main ideas of the 60o Coordinate System is that the triangle of the side of the 

triangle is the area of the triangle. So if I know the area of the equilateral triangle whose side is 
the line I drew, I can take the triangular root of the area and get the length of the line. Since z is
the length of the line, z2  is the area of the equilateral triangle whose side is z, and by the above 
equations, z2 =  x2 + xy + y2. Therefore, the length of the line r = √(x2 + xy + y2 ). I plugged in 
the values of x and y and came up with r = √(32 + 3x1 + 12) = √(13) = 3 19/32 inches. Voila! It 
works according to my ruler measurements.

Length of the Diagonal in the Parallelogram

The length of any line r within an
equilateral triangle can be found using
the knowledge that the length of a line
z = x + y. Draw a parallelogram within
an equilateral triangle so that its top side
is x and its left or right side is y. Draw a
diagonal r from the lower left corner to
the upper right corner. Then draw an
inverted equilateral triangle X,
overlapping the parallelogram sharing
the same line x. This produces an
equilateral triangle y in the left side of
the parallelogram. Having done this,
there are only 4 equilateral triangles,
each having an area of x2, dividing the
space withing the major equilateral triangle Z. Call the triangle made up of the parallelogram, 
x2, and y2, Z'. The left side of triangle X cuts the diagonal r at point P(r1, r2), dividing it into r1 
and r2 and also cuts the bottom x of the parallelogram into x1 and x2.  

First, r cuts the left side of y into y1 and y2 at point P(r1, r2) and the line z on Z' into x and 
y. r divides the line y and its parallel z into proportionate lengths, so y1 is proportional to x, and
y2 is proportional to y. This is because the triangle y and the triangle Z' are both equilateral 
triangles, sharing an angle (the left hand corner), where all the angles within each triangle are 
equal. In other words, there exists an number n such that x = n y1 and y = n y2. Number n is the 
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constant of proportionality. Therefore, z = n(y1 + y2) or z = ny. If y = 1, then n = z. 

Second, draw a line y' parallel to y such that y' = 1. Where r cuts y', y' is divided into  y'1 

and y'2. These two lengths are proportional to y1 and y2 and x and y. Because of the definition of
sine and cosine, y'1 = cos q  and y'2 = sin q if  y'1 > y'2 .

Thirdly, we know that r = √( x2 + xy + y2 ), where x and y are the sides of the 
parallelogram and r = 1/2 (r1 / cos θ + r2 / sin θ) or  r1 = r cos θ and r2 = r sin θ.

Fourth, just as the coordinates x and y of point P(x, y) are the divisions of z, and the 
coordinates r1 and r2 of the point P(r1, r2) are the divisions of r, the length of r is derived the 
same way as the length of z = x + y. Thus, r =  r1 + r2. 

 Fifth, the partial side of the parallelogram  x1 = y, both being the sides of the equilateral 
triangle y. Triangles (x, y1, r1)  and (y, y2, r2) are proportional and equivalent because when two 
lines intersect, the opposite angles j are equal; when a line intersects two parallel lines, the 
opposite angles θ are equal, and  x / y1 =  x1 / y2. Therefore, r1 / r2 = x / y, r1 and r2 having the 
same proportionality as x and y. This means that  r1 y =  r2 x. But then r1 n y2 =  r2 n y1 and
r1 / n y1  =  r2 / n y2. The parametric equations that give the same meaning are  r1 =  n y1 and  
r2 = n y2. We can say that n = r,  y1 =  cos θ, and y2 =  sin θ.

Therefore, the coordinates of any point P(r1, r2) on r is P( r cos θ,  r sin θ), where 
r = √( x2 + xy + y2 ). So knowing the coordinates of P(x, y) and the angle between x and r, we 
can know r and and the coordinates of P(r1, r2).

So. Knowing the x and y coordinates of the points of the line segment z we can know the
length of the line segment r three different ways. 
         1. z = x + y and r =  r1 + r2

         2. r = 1/2 (r1 / cos θ + r2 / sin θ)  and   r1 = r cos q and r2 = r sin q. 
         3. r = √(x2 + xy + y2 ).

Dot Product

Because of the use of equilateral triangles, the
orthogonal projection of one line onto another, or one vector
onto another, the top vector x being projected onto the bottom
vector r, it becomes the length of the bottom vector r. By trial
and error, I found this to be

|x| |r| tan θ = x . r = |r|. 
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The Diagonal in a Parallelogram

The diagonal within a parallelogram from lower left to upper right 
within an equilateral triangle has its largest length equal to the side of the 
equilateral triangle. The top of the parallelogram is x0, and as the diagonal r
slides down the side z,  x0 and r become equal to x. 

Remember the algorithmic method uses the
triangular numbers to come up with the area of a
parallelogram? Let y2 be a unit of area within the
equilateral triangle, and 

 xn = √(y2).
          (x1 = x) => y2 ,  
        (x2 = 2x) => 3y2 ,
        (x3 = 3x) => 5y2 ,

        :        :          :
              (xn = nx) => y2(2n – 1), but then,

      (xn+1 = x(n + 1)) => y2(2n + 1). 
Now,  Δx2 = y2(2n + 1), but subtract one y2 , and you get  

 xy =  Δx2 – y2, so
 xy = y2(2n + 1) – y2, and 
 xy = 2ny2 .

I have been saying that taking the triangular root of an 
area gives you a line. Then is it true that from 

Δx2 = y2(2n + 1), x = y√(2n + 1), 
giving the length of diagonal r as r approaches x? As 
diagonal r sweeps down the z axes, the triangular number nx
approaches the triangular number x(n + 1) with the next 
triangular number as nx + x(n + 1) = 2nx + x = x(2n+1) 
which is the number of equilateral triangles within the 

parallelogram given by xy = y2(2n + 1) – y2 so that
 r => 2n + 1as y2 approaches zero. 

Volume becomes squished into a line, so 2n + 1 is the greatest length r can attain, where n =

0, 1, 2, 3, … , t. In the slice Δx2 of x2 at the bottom of the triangle xyz that includes the 
parallelogram xy and the equilateral triangle y2, there are (2n + 1) y2 's and (2n + 1) x 's in r as r 
approaches x. In other words, r => Δx2 as r => x, becoming two-dimensional. Δx2 becomes very
thin, becoming dx2. 

Let's start with the (2n + 1) y2 's. Take the first y2 and take the triangular root of it. Take 
the next y2 and do the same on down the line. For an ever expanding triangle, there are (2n + 
1)y2 's along the bottom of the triangle. Adding up all the little volumes within the triangle, and 
taking the triangular root,
x2 = y

1
2  + 3y

2
2  + 5y

3
2  +  …  + (2n + 1)y

n
2 =>  y

1
  + y

2
√3  + y

3
√5+ … + y√(2n + 1) = x.

Looking at each slice singly,
Δx2 = y

1
2 => y

1
= x 
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Δx2 = 3y
2

2 => y
2
√3 = x

Δx2 = 5y
3

2 => y
3
√5 = x

      :        :          :
Δx2 = (2n + 1)y

n
2 => y√(2n + 1) = x

This is not reasonable. Intuitively, the (2n + 1) should not be under the root sign. Within 
y√(2n + 1), n would have to increase at an alarming rate for this expression to form all of the 
triangular numbers.  After taking the triangular root of each y2 in Δx2 , all the y's are added up 
to create x as y2 reduces to zero, that is, as r swings down to be parallel to x. 
Therefore,  y

1
2  + y

2
2  + y

3
2  +  …  + (2n + 1)y

n
2 => y(2n + 1) = x, that is, (2n + 1) y's. (Pronounced 

“wise.”)

[Notice that the amount of x's on top of the slice Δx2 is nx, and on the bottom is nx + 1. 
Add these together and we get the number of equilateral triangles in the slice: nx + (nx + 1) = 
2nx + x = x(2n+1). Since we are talking about unit x's and unit y's, x(2n + 1) = y(2n + 1). 
Example, 1 + 2 = 3, 2 + 3 = 5, 3 + 4 = 7, 4 + 5 = 9, etc. as n = 0, 1, 2, 3, … , t. This is called 
triangular numbers.]

There is a general principle here. It has to do with factoring. Take an expression V2 and 
factor out an x2 such that Nx2 = V2 for any expression N. Now take the triangular root of both 
sides so that x√N = V. That is the traditional way of doing it. My objection is that this doesn't 
work in a 60o coordinate system. For any expression Nx2 = V2, taking the triangular root of both
sides we have Nx = V. The N is never put under the root sign. It is independent from the 
operation of taking the triangular root. So having a volume V2 , and taking its triangular root, 
making it a line V, we have a length Nx giving the number of unit x's. If it were √N x's, it 
would be too complicated to fit in with a 60o coordinate system in that n ε N would have to 
increase at an alarming rate, skipping some slices of the triangle, to create all of the triangular 
numbers. But Nx provides the right order as in the example above. 

Approaching an Algebra of the  60o Coordinate System

We have some really important discoveries pertaining to the algebra of a 60o coordinate 
system.

1. x + y = z as the distance equation instead of  z = √(x2 + y2),
2. x = √(x2), showing that the triangular root of an area is a line,
3. A parallelogram is treated as a rectangle xy when its internal angles are 60o  and 

120o ,
4. (x + y)2  =  x2 + xy + y2  and not x2 + 2xy + y2  because a triangle is 1/2 a square, 

and
5. If x2 is a factor of V2 , Nx2 = V2 , then  Nx = V.

Note: If y
n

2 =  y2/(2n + 1) and y
n

2[(n + 1)/(2n + 1) + n/(2n + 1)] =  y2 = Δx2 then let F be called a

Fourier, so that F = Δx2  –  y
n

2 (n/(2n + 1))

Note: all the triangles within the major triangle are counted using triangular numbers. This 
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leads to being an analog for harmonics of a string. This leads to the orthogonality of sin and 
cosine functions. This leads to the basis vectors of the 60o coordinate system.

Simplifying Mathematics

With these ideas in mind, we can build a foundation for simplifying mathematics.
(I figured this out on my own without consulting a text book. Afterward, I remembered seeing 
the equation x = r cos θ. I had to prove to myself that this equation was true. But it is true for a 
60o coordinate system as well as a 90o coordinate system. It is an invariant between these two 
coordinate systems. That is what I love about mathematics when I find something like this.)

    The radius of a circle becomes r = ax + by so there is no need for the Pythagorean 
Theorem. You have to choose your coordinate system carefully to simplify math.

You can see from the above that the (2k + 1) is a triangular number. The Fourier Series 
seems to fit right into the 60o coordinate system.

from: http://en.wikipedia.org/wiki/Fourier_series
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Conversion Between 90
o
 and 60o Coordinates

Overlay a 60o coordinate system over a 90
o
 coordinate system such

that they both share the same origin at O and vector r. Choose any point
P(x, y) at the end of r. Draw a line x from the Y–axis to P and another line
y from the X–axis to P. Draw a line Z from the X–axis through P such that
the angle between Z and X is 60o . Call y' the distance along Z from the X–
axis to P. Assuming that Z is the right side of an equilateral triangle with a
base along the X–axis, then let x' = z – y' along the length of z above P.
The length of any side of this equilateral triangle is z = x' + y' by definition of an equilateral 
triangle. Since x' may be unknown, z can be found another way. A right triangle is created by y 
and y' having a base x'' where x'' = y' cos 60o. To obtain z simply add x + x''. So, in order to 
convert between a  90

o
 coordinate system and a  60o coordinate system, one has to know the x 

and y coordinates of P. Then y' can be calculated using y, x'' can be calculated using  y', and 
then z = x + x'' and x' = z – y'. If the length of z is known beforehand, the calculations simplify, 
and z can be arbitrarily as long as P(x, y) is on z. 

If z is known, then using the definition of the trigonometric function, y = r sin θ, it can be
seen that y' = y/sin 60o and then x' = z – y' .

If z is not known, then 
y' = y/sin 60o , x'' = y' cos 60o , x + x'' = z, and then x' = z – y'. 

Parametric Equations

Using the lines from the corners out to the opposite sides, 
x = z/c, y = x/c, or z = y/c, then the length of these lines are:
x = r cos θ,  (cos θ is the x coordinate in the unit triangle)
y = r sin θ,   ( sin θ is the y coordinate in the unit triangle) and
z = r sec θ, where sec θ is the z coordinate in the unit triangle.
These six equation constitute the parametric equations of a line.

Length of a Line

Adding these equations, we can come up with a generalized equation for r.
If r = x/cos θ or r = y/sin θ, then adding these two equations, 
  2r = x/cos θ + y/sin θ, and
    r = ½( x/cos θ + y/sin θ ).
Generalizing,
2r = [(x1  –  x0) /  cos θ] + [(y1 –  y0)  / sin θ], such that
r = ½ ( [(x1  –  x0) /  cos θ] + [(y1 –  y0)  / sin θ] ), and for three dimensions,
r = 1/3 ( [(x1  –  x0) /  cos θ] + [(y1 –  y0)  / sin θ]  + [(z1 – z0) / sec θ ] ).
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Shape of a Line

The shape of a line is given by using the equations for constant lines crossing a single 
point P(x, y,z),

x = c,                                                                                               
y = c, 
z = c, 

and adding these equations to get some curve 
x + y + z – 3c = 0, or generalizing, 
ax + by + cz – k = 0.
P(x, y, z) is a point of intersection of the three above lines on any curve that can be 

drawn within the equilateral triangle as a combination of x's y's and z's to produce the lines 
necessary to that point. This is the same principle as a pen on a graph machine.

The Distance Formula

Instead of, as in a 90o coordinate system where the distance formula is
d = √ [(x1  –  x0)

2 + (y1 –  y0)
2], 

the distance formula for the side of an equilateral triangle or radius of its arc is
d = x + y. 

For a rotated line inside an equilateral triangle, or for that part of the radius of an arc that is 
inside the triangle,

d = x / trig
x
 θ where 0

o
 < q ≤ 60

o 
, or from the parametric equations,

d = ½ ( x /  cos θ + y  / sin θ ) which is an average of two lines.
Note: using all three coordinates, d = 1/3 ( x /  cos θ + y  / sin θ  + z / sec θ).

Now with the knowledge we have in x + y = z, we know that z is a side of an equilateral 
triangle and z2 is the area of that triangle. Now within that area, the triangle is divided into an 
x2, a y2, and xy, a parallelogram. So z2  = x2 +  xy + y2, and z = √(x2 +  xy + y2). It's not the 
Pythagorean Theorem, but it does give an accurate description of a length of a line withing a 
60o coordinate system.

The Length of r

Any line r has a length of x + y. Within an equilateral triangle ABC with sides X, Y, and 
Z, draw a line r from O to the opposite side Z. Line r is the base of another equilateral triangle 
A'BC' and is a radius drawing out an arc s. Swing a copy of r down to X so that r coincides 

with X. From the endpoint of r, draw a line l parallel to Z up to Y. Line l completes another 

equilateral triangle A''BC''. The triangle A'BC' therefor is only the triangle A''BC'' rotated at an 
angle of q.

Z' = Z'', r = X'', and Y' = Y'' by definition. Draw a line r' from O to Z' where triangles 
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A'BC' and A''BC'' intersect at point P(x,y). Because Z' crosses Z'', producing angles f and f', 
the angles f and f' are equal.

Radius r' divides Z' into x' and y' and Z'' into x''
and y''.

All angles of equilateral triangles are equal, so a 
and b are equal by definition.

Since Z' = Z'', y' / x'  =  x''/ y''. 

The distance between l and Z is rs. The distance 

between the two arcs s and s' of which both extend from
X'' to Y'' is also rs. 

Angle a is made up of sides y' and rs and angle b is made up of sides x'' and rs . 

Because y' / x'  =  x''/ y'' and a = b and f = f', then the triangles A'A''P(x,y) and C 'C ''
P(x,y) are congruent.

The triangles A'A''P(x,y) and C 'C '' P(x,y) are both shortened by sides rs . We can call the
side opposite f,  ys . 

Because a = b and f = f' and ys  = rs , then y' = x''. 
If y' = x'' and Z' = Z'', then x' = y''.
By definition, Z'' = X'' = Z' = r. 
Therefore, r = x' + y' = x'' + y''. 

Generally speaking then, any line segment within an equilateral triangle, no matter at what 
angle it lays, be it l or r, can be defined by z = x + y.

Angles

Starting with an equiangular, equilateral triangle, let 
there be a vector extending from the lower left corner through 
the opposite side such that the vector's length is the same as that
of any side of the triangle. 
Referring to the figure to the left, at the point C,  the length of 

the vector r = x + y.  But at the point B, the full length of  r = ½ 
( x /  cos θ + y  / sin θ ).  (In the figure, n = y.)      

The figure to the right shows a hexagon. It represents the
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cycle of the circle based upon the chords of the hexagon instead of
the ratio π of the circumference to the diameter. Using a unit
triangle where each side is one unit, and therefore, each chord is
one unit, the circumference of the circle is divided into 6 parts. Let
one rotation of r,  beginning and ending at the x–axis, stand for one
cycle. Each chord represents 1/6th of a cycle. Then it is logical to
keep that division of 6 and divide each chord into 6 equal parts or
1/36th of the hexagon. Then there would be 36 divisions of the 
circle. If there are then 10 divisions between each 1/36th mark, there
will be 360 divisions around the hexagon. Extending those
divisions to the enclosing circle, the circle then receives 360 divisions. The angle θ can be 
represented by these divisions being projected onto the circle, which would be 360o. Divisions 
on the hexagon would be 360 radians. Using radians, larger divisions would be in terms of 
n/36, and smaller divisions, n/360.

The trigonometric functions are defined as follows:
sin θ = y/z
cos θ = x/z
tan θ = y/x
cot θ = x/y,

and  θ = tan – 1  y/x where y will always  be in divisions of n/36 or n/360.

A trigonometric table within the unit triangle of the hexagon using radian measure s 
based upon 1/36th of a cycle and 1/360th of a cycle:

 s Sin  s Cos  s Tan  s

0 0 1 0

1/360, 1/36 1/360, 1/36 359/360, 35/36 1/359, 1/35

1/180, 1/18 1/180, 1/18 179/180, 17/18 1/179, 1/17

1/120, 1/12 1/120, 1/12 119/120, 11/12 1/119, 1/11

1/90, 1/9 1/90, 1/9 89/90, 8/9 1/89, 1/8

1/72, 5/36 1/72, 5/36 71/72, 31/36 1/71, 5/31

1/60, 1/6 1/60, 1/6 59/60, 5/6 1/59, 1/5

7/360, 7/36 7/360, 7/36 353/360, 29/36 7/353, 7/29

1/45, 2/9 1/45, 2/9 44/45, 7/9 1/44, 2/7

1/40, 1/4 1/40, 1/4 39/40, 3/4 1/39, 1/3

1/36, 5/18 1/36, 5/18 35/36, 13/18 1/35, 5/13

1/30, 1/3 1/30, 1/3 29/30, 2/3 1/29, 1/2

1/20, 1/2 1/20, 1/2 19/20, 1/2 1/19, 1

1/10, 1 1/10, 1 9/10, 0 1/9, +1
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Note that in the Tangent column above all the denominators are one less than the denominators 
in the s column, and also in the Tangent column, the numerator added to the denominator 
equals the denominator in the s column. Also, look at the placement of the nines and multiples 
of nine. 

36 * 1/360 segments = 1/10 (sin 6o )
18 * 1/360 segments = 1/20 (sin 3

o
 )

12 * 1/360 segments = 1/30 (sin 2o ), 5 * 1/30 = 1/6, and then 6 * 1/6 = 1 
10 * 1/360 segments = 1/36, and then 6 * 1/36 segments = 1/6. Then 6 * 1/6 segments = 1 unit
09 * 1/360 segments = 1/40
08 * 1/360 segments = 1/45
07 does not work. It does not divide evenly into 360.
06 * 1/360 segments = 1/60 (sine 1o ), 10 * 1/60 = 1/6, then 6 * 1/6 = 1 unit. 
05 * 1/360 segments = 1/72, 6 * 1/72 = 1/12 (sin 5o ), 2 * 1/12 = 1/6, then 6 * 1/6 = 1 unit. 
04 * 1/360 segments = 1/90
03 * 1/360 segments = 1/120, 2 * 1/120 = 1/60, 10 * 1/60 = 1/6, then 6 * 1/6 = 1 unit.
02 * 1/360 segments = 1/180, 3 * 1/180 = 1/60, 10 * 1/60 = 1/6, then 6 * 1/6 = 1 unit.
(Notice that the 6 in (sin 6o ) times 6 is 36, the 3 in (sin 3

o
 ) times 6 is 18, etc. showing a 

relationship of 6 to degree measure and the numbers multiplying 1/360.)

Setting one segment of a chord or radian to 1/360th, only 2, 3, 5, 6, 10 or 12 segments produce a
rational multiple of the 6 sections of a hexagon. (That is, under the count of 36.)

The divisors of 360 include all the digits except 7, but only 6 and 60 divide 360 in a symmetry 
that the other digits don't. This is because 36 = 62.  
360/2 = 180, 360/20 = 18; 360/3 = 120, 360/30 = 12; 360/4 = 90, 360/40 = 9; 360/5 = 72, 
360/50 = 7.2; 360/6 = 60, 360/60 = 6; 360/8 = 45, 360/80 = 4.5; 360/9 = 40, 360/90 = 4.
The only divisor here that creates symmetry is 6 because x/6 = 60 and x/60 = 6 where the 6 and
the 60 are interchangeable and there are no other digits you can do this with. Therefore, it 
seems more natural to divide the circumference of a circle into 6 sections, or multiples of 6.

There are 12 * 30o segments in a circle and 5 * 72o segments in a 
circle. Every 30o is divided into 5 * 6o. If the circle is divided into 
12o segments, every 5th segment is 60o . Half of each 12o segment 
would be 6o . So dividing the circle into 6 degree segments, you get 
the numbers 5, 6, 12, 36, 60, 72, and 360, getting multiples of  2, 3, 
and 5.

 
Next, look at the trigonometric functions using degrees. This 

trigonometric table is based on a unit triangle within a unit hexagon.
The degrees of a circle are projected onto the Z axis of the equilateral triangle. Each coordinate 
pair of the projected points then correspond to a degree. What is listed below is either x/z or y/z
where z is the radius of the circle encompassing a hexagon. Therefore, the trigonometric 
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functions are based upon the chords of the circle instead of the arcs of the circle.

q Sin q Cos q Tan q

0o 0.0000000 1.000000 0.0000000

5o 0.1015625 0.906250 0.1120690

10o 0.1875000 0.812500 0.230769...

15o 0.2734375 0.734375 0.3723404

20o 0.3515625 0.656250 0.5357143

25o 0.4218750 0.5781250 0.7297297

30o 0.5000000 0.5000000 1

35o 0.5781250 0.4218750 1.370370

40o 0.656250 0.3515625 1.8666...

45o 0.734375 0.2734375 2.685714

50o 0.812500 0.1875000 4.3333...

55o 0.906250 0.1015625 8.923077

60o 1.000000 0.0000  ∞

Sec q = Sin q or Cos q because a secant is the chord underneath the arc. In other words, Sec q  
= x + y which is the z coordinate. (Errors may be due to computer calculations.) (Underlined 
segments are to be repeated.)

Directed Line Segments or Vectors

If r is treated as a vector, then r = (x1  –  x0) + (y1 –  y0). This
agrees with the definition of a vector, that is, v = i(cos θ) + j(sin θ)
where v is a unit vector. Multiplying both sides of the equation by a
constant c, where u = cv, u = ci(cos θ) + cj(sin θ). If x = ci (cos θ)
and y = cj (sin θ), then u =  x  + y . (It must be remembered that the
trigonometric functions used here are based upon the 60

o
 coordinate

system, so the numbers will be different.)

If θ > 60
o
 , then l is being rotated into the next sextant, and the

calculations of length are similar, and is similar for each of the six sextants. 

Another line, radius r, can be considered having the same length of any side of an 
equilateral triangle. When it is rotated between 0

o
 to 60

o
 then r intersects Z at any point P

 
. The 

coordinates of P are the components x and y of r such that x + y = Z, and x + y = r since r = X =
Y = Z . 
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To add r1 and r2 , 
r1 =  x1 + y1, and
r2 =  x2 + y2, so
r1 + r2  = x1 + y1 + x2 + y2  = ( x1 + x2 ) + ( y1 + y2 ) which adds up to a larger triangle.
r1 –  r2  = (x1 + y1) – (x2 + y2 ) = ( x1 – x2 ) + ( y1 – y2 ) which is a decrease in the triangle. 

Looking at the previous figure, you can see that  z0 =   x0 +  y0 but x0 and  y0 are 
components of z1. Seeing that 

z1  =  x0 + (x1  –  x0) + y0 + (y1 –  y0)  then, 
r = z1 –  z0 = x0 + (x1  –  x0) – x0  + y0 + (y1 –  y0) –  y0 and,
r = z1 –  z0 = (x1  –  x0) + (y1 –  y0) so,
r = z1 –  z0 .

When r is rotated outside the triangle
d = r1 + r2  = ( x1 + x2 ) + ( y1 + y2 )  or, 
d = r1 –  r2  = ( x1 – x2 ) + ( y1 – y2 ) or,

 d = r = z1 –  z0 .

If the vector r = x + y, and 
     sin θ = y/r and 
    cos θ = x/r, then 

  cos θ + sin θ = (x + y)/r.  Therefore,
  cos θ + sin θ = 1.

 Solving for (x + y), we have, (x + y) = r(cos θ + sin θ). Therefore,
z =  r(cos θ + sin θ).

Let s = (x + y), so any vector s = r(cos θ + sin θ). Another way of writing s is re  where 
 e = (cos θ + sin θ). So the vector s =  re. 

(cos θ + sin θ) can be represented by the ordered pair (x, y). Therefore, at each of the six 
axes of the hexagon, at r = n, cos θ and sin θ are replaced by:

for the x–axis, (1, 0),
  y–axis, (0, 1),
  z–axis,+(0, 0),

         – x–axis, (–1, 0),
         – y–axis, (0, –1), and

–             – z–axis, –(0, 0).

If a third number were included into the ordered pair to make an ordered triplet, then a 4th

–axis would be represented thusly: (x, y, z) and would be inside a tetrahedran.

The difference between a vector and a scalar

A vector r can be extended only in one way, and that is to be multiplied by a scalar a, 
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thus, ar. Although two vectors can be added to make a longer vector, the original vectors are 
not extended. The only way a scalar can be extended is to have something added to it, thus, x + 
w. In discussing the conic sections, I will deal with the extensions of both vectors and scalars.

The Conic Sections

Coordinate System and Lines

Take any finite line L having ends A and B. Divide it into any two sections x and y. The 
point of division is P(x, y), the sections of the line being the coordinates of the point. Have the 
length of L be z such that z = x + y. P now describes any point on the line L with x and y the 
coordinates. 

Let L be expanded into a plane such that L is one side of an equilateral triangle ABC 
where C is a point opposite L = AB = z0. Let x as well as y be expanded such that x as well as y
is the side of an equilateral triangle congruent with triangle ABC. Let AC = y0 and CB = x0. The
base of the triangle Ay0P, the triangle expanded from x on L, is parallel to x0 and is equal to x 
and is called the x coordinate. The side of the triangle PBx0 parallel to y0 is equal to y and is 
equal to the y coordinate. 

Let there be parallel lines z0, z1, z2, … zn descending down to point C in the triangle ABC 
where z0 = L. Then draw a line l from zn – 1 to zn dividing zn – 1 and zn into xn – 1 and yn – 1 and xn 
and yn  respectively. The endpoints of l are (xn – 1 , yn – 1) on zn – 1 and (xn , yn) on zn. 

The length r of  line l can be thought of as a vector. Remember that r = ( xn – 1 + xn) + ( yn –

1 + yn) = x + y, with (x, y) as the endpoint. The norm of r, |r| =  xn + yn .

The Circle

If r is held constant and and the endpoint of r, (xn , yn), remains attached to all zn  

descending down towards point C, then r becomes the radius of a circle. If zn passes through 
the circle, there is another point (xn' , yn') opposite (xn , yn) on  zn such that (xn' , yn') is also the 
endpoint of r. (xn' , yn')is the conjugate of (x, y).

For an arbitrary line segment r in the middle of the triangle, we draw
a line z0 through the lower end of  r and z1 at the other end of r.  r divides z0

into (x1  –  x0) and (y1 –  y0). (y1 –  y0) extended straight across to z1 and (x1  –  

x0) extended up to z1 creates a parallelogram with sides (x1  –  x0) on top and
bottom and (y1 –  y0) on each side with r as the diagonal.  

The length of  r can be treated as a vector. The sides (x1  –  x0) and (y1 –  y0) of the 
parallelogram are the components of r and can be added such that

r = (x1  –  x0) + (y1 –  y0) =  x + y .
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To generalize this somewhat to include negative numbers in x and y, in other words, 
using the whole plane, which is a hexagon, let r = |x1  –  x0| + |y1 –  y0| as the equation of a circle. 

Vector addition is as simple as  |x1  –  x0| + |y1 –  y0| = (x, y) => z = x + y where x and y are 
coordinates.  
Note: x1  +  x0  = x and  y1 +  y0  = y.

This is a geometric addition and describes a circle as r rotates and remains constant. The 
points (x, y) are on the curve of the circle. The circle is described geometrically as r = x + y.

The Ellipse and Proving the Distance Formula
 

 A circle is defined as an ellipse where the distance 
c from the focus to the center is equal to 0. The 
distance from the center out to a point B on the 
ellipse is a. The distance from a focus out to a point P
is d. Since there are two foci, F

1
( – c, 0)  and F

2
(c, 0),

there are two distances, d
1
 and d

2
, out to the same 

point P(x, y). The sum of the distances d
1
 =  |F

1
, P| 

and  d
2
 =  |F

2
, P| is equal to some constant. When P is 

at B on the image to the left, then d
1
 + d

2
 is equal to 

that same constant. Therefore, (a + c) + (a – c) = 2a is
that constant. 

But when P is not at B, d
1
 = (x – c)  + y, and d

2 
= (x + c) + y, so  (x – c)  + y + (x + c) + y 

= 2a. Since x – c and x + c are always changing relative to the same y, let x – c = x
1
 and x + c = 

x
2
. Then the equation for an ellipse becomes  

x
1
 + x

2 
+ 2y = 2a. This becomes 

y = a – ( x
1
 + x

2
)/2.

The general equation becomes 2x + 2y = 2a or x + y = a. As c becomes zero, a becomes  
radius r, so the equation for a circle becomes r = x + y. 

In order to find the point P on the curve in terms of x and y, we use three vectors, (x, y) 
on the curve, (x0,  y0), the left focus, and (x1, y1), the right focus, where the origin of all three 
vectors is at the corner formed by the x and y axes. That makes d

1
 = (x0,  y0)  –  (x, y) and d

2  
=  

(x1, y1)  –  (x, y). So
(k, 0) = [(x0,  y0)  –  (x, y)] +  [(x1, y1)  –  (x, y)], and
(k, 0) = (x0,  y0)  –  2(x, y) +  (x1, y1). So
(x, y) = [(x0,  y0)  +  (x1, y1) – (k, 0)] / 2

Letting y = 0, (x, 0) = [(x0,  y0)  +  (x1, y1) – (k, 0)] / 2
              x = [(x0 + x1) + (y0 + y1) – k] / 2

From the above paragraph, the equation for the ellipse is 
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              y =  [k – ( x
1
 + x

2
)] / 2, where k = 2a.

It could also be interpreted as y =  [( x
1
 + x

2
) – k] / 2.

It is seen that the general equation is z = x + y. 

The Parabola

The apex A of a parabola is equidistant from a line
parallel to the y axis (or in some cases, the x axis), called
the directrix D, and  a point F, called the focal point of the
curve. Traditionally, the distance from the directrix and the 
focal point is called p. Now A, as it travels along the
parabolic curve, is the point P(x, y). This point is always
equidistant from the directrix and the focal point. That's
what makes it parabolic. The smallest distances (D, A) and
(A, F) are p/2. Let the distance from F to P be r0, and the
distance from D to P be r1. 

Therefore, r0 = r1. 
A lies on the y axis. The equation of this line is x = 0.

The equation of the directrix is x =  – p/2.  r1 then is the
distance from Pd(– p/2, y) on the directrix to P(x, y) on the
curve. r0 is the distance from P(x, y) to the focal point
F(p/2, 0). When y = 0, that is, when P = A, so that also x =
0, r1 = – p/2  and r0 = p/2. But when P starts rising or lowering from A, P has to be added to the 
equation. So r1 = (– p/2 + y) – (x + y) and r0 = (p/2 – 0) – (x + y). 
Now we have the equation of the parabola as  

(p/2 – 0) – (x + y) = (– p/2 + y) – (x + y),
(p/2 – x) – (y + 0) = – (p/2 + x) – (y – y).
         (x – p/2) – y =  – (x + p/2), so 

      y = (x – p/2) + (x + p/2).
The vector representation of the parabola goes in this manner.
Let F = (x0, y0), P = (x, y), and Pd = (x1, y1), so that using vectors, we have

     (x0, y0) – (x, y) = (x, y) – (x1, y1)
This reduces to 

     2(x + y) = – (x1 + y1) – (y0  + x0)
            2x =  – x1 – y1 – y0  – x0 – 2y, then

                 x = [– (x0  +  x1) – (y0 +  y1)  – 2y] / 2
      x = – [(x0  +  x1) + (y0 +  y1) + 2y] / 2

It appears that the general equation for the parabola is also 
      z = x + y.

The Hyperbola

The difference between the ellipse and the hyperbola is that with the ellipse, r0 and
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r1 are added. The hyperbola is created with a difference of r0 and r1 . Therefore, the equations 
for the hyperbola is 

y = a – ( x
1
 – x

2
)/2, 

and using vectors, 
x = [(x0 + x1) – (y0 + y1) – k] / 2, where k = 2a.

Again, the general formula is z = x + y.

Comparison of Equations

The ellipse:
x = [(x0 + x1) + (y0 + y1) – k] / 2

The hyperbola:
x = [(x0 + x1) – (y0 + y1) – k] / 2

The parabola:
x = – [(x0  +  x1) + (y0 +  y1) + 2y] / 2

These three equations are linear and deal with straight lines. The constant in these cases 
are parallel to the z axis or one side of the equilateral triangle. The traditional equations, I 

would say, deal with the area of the equilateral triangle. 
Changing the above equations to volumes is as simple as 
triangling them. These lines are the triangular roots of the 
volumes.

Towards a Theory of Conics

For all lines x = qx' within an equilateral triangle, space 
is bent around an isometric space representing a three 
dimensional 90

o
 space.  This defines a linear space for three 

dimensions. Using these lines as a grid, wherever any two 
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sets of lines z = by, x = cz, y = ax, and z' = by', x' = cz', and y' = ax', intersect, two points P1(x, 
y, z)  and P2(x', y', z') are created. Draw a straight line l going from P1 to P2 such that the line 
goes from one corner of a parallelogram to another. Draw another diagonal line within the next 
parallelogram, then onto the next, etc. Drawing a straight line through a curved space, which 
the linear space within a triangle is, the line appears to follow the curve of the space.  The finer 
the grid, the smoother the curve. The curve created in this manner is non–linear, but because it 
is made up of linear segments, it is discrete. Any curve in Nature is made up of discrete linear 
segments. There is no true continuous line. Everything in nature comes in little packets.

Any conic section, any curve, is not continuous. It is
made up of small discrete lines. A compromise with
mathematicians who argue about continuity cannot be
made. Even if you use a 90

o
 coordinate system, space must

be curved using small discrete segments for curved lines.
Any curve can be created using a linear space.  

First, using all points made
from the intersection of
equations x = qx', find a set of line segments that form a 
parallelogram. Draw a line from P

2
(x, y, z) and P

1
(x, y, z) which 

can be found by solving four simultaneous equations of the form 
x = qx'. Then include the next set of four equations to solve them 
and the last set as the next four equations and so on until you 
have all the points in the curve, then connect all the points.

From x = qx', we get x – qx' = 0. If we sum all of Dx – Dqx', we get the curve ∑
yo

yn 
(Dx – Dqx').

If you skew the triangle, you have a
differently shaped curve. Since each
triangle has a one–to–one
correspondence to the 60

o
 triangle by

scale, we are still within the 60
o

coordinate system. Any curve can be
demonstrated by curving the space it is
drawn in.

The Rotating Line Segment

It is true that z = x + y, and for z = 1, x = cos q, y = sin q,  so that 
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1= cos q + sin q, where 0
o
 < q ≤ 60

o 
.

Multiply both sides by ∆z to get 
       

∆z = ∆z cos q + ∆z sin q, which is true for  0
o
 < q ≤ 60

o 
.

Let there be a ∆x and a ∆y such that ∆z cos q = ∆x and ∆z sin q = ∆y where ∆x is a variable 
line segment on the x–axis and ∆y is a variable line segment on the y–axis and  q is the angle 
between ∆z and ∆x.
      Therefore, ∆z = ∆x + ∆y.

Proof: [It is sufficient to show that ∆z = ∆z cos q + ∆z sin q.]
Let ∆z = ½ ∆z + ½ ∆z. Therefore, ∆z = ∆z cos 30

o + ∆z sin 30
o

Generalizing, if it is true for 30
o
 , it is also true for 0

o
 < q ≤ 60

o 
.

Therefore, ∆z = ∆z cos q + ∆z sin q .

Remember, that cos q + sin q can be expressed as eq . 
Therefore, another way to express ∆z is ∆z eq . Since q = wt, then ∆z
= ∆z e wt  and is a line segment rotating at the angular velocity of w . 

Theorem:
The rotating line segment ∆z rotates about its midpoint.

Definitions: Vertical means lying at 60
o
 .  Horizontal means lying at 0

o
 or 180

o
 .

Proof: [It is sufficient to show that ∆z ≠ ∆x + ∆y.]

∆z is a constant, as ∆z = ∆x + ∆y. If ∆z is horizontal, then ∆z = ∆x, and ∆y = 0. The 
endpoints therefore of ∆z lie on the curve of a circle whose diameter is ∆x . If ∆z is vertical, 
then ∆z = ∆y, ∆x = 0, and the endpoints of ∆z lie on the curve of a circle whose diameter is ∆y. 
If ∆z is neither vertical nor horizontal, then ∆z = ∆x + ∆y.  Say that ∆z rotates through any 
point other than its center, esp. near either endpoint, then each endpoint moves along a different
circle and both ∆x and ∆y are split. Therefore, ∆z would not equal ∆x + ∆y.

Circular Measurements

The circumference of a circle C = 2pr. 
Arc length s = r q . 
To change from degrees to radians, q =  p/n, or divisions of p.
Therefore, in radians, arc length s = r p/n. 

Now if we base p on the perimeter of the unit hexagon instead of on the circumference 
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of the unit circle, and since the circumference of a circle is divided by a hexagon into six arcs, 
let p = 3. Where p would be, there are 3 chords.

Substituting 3 for p, arc length s = 3 r/n.

Let p = C/2r.    The circumference of the circle now becomes C = 2 · 3r = 6r. It isn't how 
many times the radius fits around the circumference, but 6 chords of the circumference times 
the radius outwards, the circumference expanding.

Arc measure verses Linear Measure

A circular hexagon is likened unto a hexagon that is blown up like a balloon. The sides 
of the hexagon are bent so as to produce a circle with the same radius that exists from the 
center of the hexagon to one of its corners. Let this radius be one unit. This circular hexagon 
inscribes the regular hexagon. Draw another circle with six equal arcs around the 
circumference so that the radius equals the same length as one of the arcs.  

Let sub h designate the first hexagon and the sub c designate the second circle. 
The circumference ch = 6 rh. An arc ah =  3r/n
Let radius rh = 1. Therefore arc ah = 1 and   ch = 6.
Since cc = 6 rc  , and rc = 3r/n, then  cc = 18r/n where n is some division of 360 in 60 

increments.
Having the radius the same length of the arc shows a different sized circle than the circle 

as a blown up hexagon.
The area of a spherical triangle D = r2 [(a + b + c) – p] where a + b + c = e, called the 

spherical excess (which is actually 6
o
). If e = 0, D is the area of a planar triangle. If each side of 

one of the 20 spherical triangles on the surface of the spherical icosahedron is equal, then a = b 
= c = 72

o
 or 1.2564 radians.  If r = 1, the area of each one of these spherical triangles is D = (3 x

1.2564) – p = 0.627607. Multiply that by 20 and you get the surface area of 12.5521 square 
radians. That converts to 14 triangular radians and to 720

o
 (which is the sum of all the angles in 

a tetrahedron). But divide 0.627607 by (√3)/4 to convert it to equilateral triangles and multiply 
that by the 20 spherical triangles of the spherical icosahedron and you get 29 = 4 x 7 1/4 (4 
times the area of one great circle).  The surface area of a unit sphere is 4pr2. With r = 1, 4p = 
12.5521, but 12.5521/(√3)/4 = 29. So the surface area of a sphere is 29r

2
 in spherical equilateral

triangular units.
There are new expressions for each of the three dimensions in equations of nature's way 

of measuring that don't use p or the Pythagorean theorem. 

Old Formula New Formula Units

V sphere = 4/3 pr
3 

5 r
3 tetrahedrons

7 1/4 r
2 triangles
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A circle = p r
2

A sphere = 4 p r
2 

29  r
2 spherical triangles 

C circle = 2 p r  6 r 60o arcs

S arc = r p/n 3 r/n 60o arcs

(Note also that 4/3 p r
 3
 where p = 3 equals 4, but 4 x (9/8)

 2
 = 5) 

A Review of  Trigonometry

Starting with the angle, it has an initial side, a terminal side and a vertex or the point of 
the angle. The standard position of the angle, called positive, is a counterclockwise rotation. 
The negative angle then has a clockwise rotation. An angle may be generated by making more 
than one revolution, the terminal side passing the initial side once or more than once. And 
depending upon the direction of rotation, a negative angle remains a negative angle, and a 
positive angle remains a positive angle.

The trigonometric functions can be defined as follows:
sin θ = y/(x+y),
cos θ = x/(x+y),
tan θ = y/x,
cot θ = x/y,

and  θ = tan – 1  y/x,
where x + y = r. Also, x + y = z. 
y will always  be in multiples of n/36 or n/360.

Traditionally, trigonometric functions have been based 
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upon the right triangle. The tetrahedral function z3 = +/– 1  forms an interface between 90o and 
60o coordinate systems.  Based upon the right triangle, Sin 60o has been defined as (√3)/2, 
which is the volume of a unit equilateral triangle, and  cos 60o as ½. The distance between the 
imaginary roots of  z3 = 1 is √3 which is also defined as  tan 60o. The diagonal of a square with 
sides of √2 is sec 60o  which is 2, the reciprocal of cos 60o .  So, we have

 sin 60o = (√3)/2,
 cos 60o = ½,
 tan 60o  = √3 and 
 sec 60o  = 2.

The cos 60o = ½ is only one half the base of an equilateral triangle. The hypotenuse of 
the right triangle is unity and is another side of that triangle.
Allowing the hypotenuse be defined as the y–coordinate and 2
cos 60o = ½ be defined as the x–coordinate of the  60o

coordinate system, we have been led from our 90o coordinate
system into our  60o coordinate system. This is true for every
30

o
/60o/90o  triangle.

Take a cube of which each side is divided into four
squares where each side is (√2)/2, making that a cube of √2.
Drawing one inch diagonals to each of the four squares on
each face of the cube so that they form another square which 
is turned 45o from the square face, each of these diagonals can
be connected to form 4 hexagons interlaced within the cube.
Each of the diagonals is ½ sec 60o = |x| = |y| = |z| = 1, and this shows the 45o angle between the 
90o and 60o coordinate systems. 

Imaginary numbers also form an interface between 90o and 60o coordinate systems. 
Using the side s of an equilateral triangle, an imaginary number is of type, +/– s/2 +/– h, where 
h is the height of the triangle.  For a unit equilateral triangle, the imaginary number would be 
+/– ½ +/– (√3)/2. Since the height of the triangle would have as many divisions n as the side s, 
a general imaginary number would be +/– s/2n +/– h/n. But since the height of a unit 
equilateral triangle is (√3)/2, the imaginary number would be +/– s/2n +/– (√3)/2n. The 
distance between any two of  – s/2n – (√3)/2n, + s/2n – (√3)/2n, – s/2n +(√3)/2n, + s/2n + 
(√3)/2n would be |(√3)/n|. In a  90o coordinate system, sin 60o = (√3)/2n, and cos 60o =  s/2n. 
The imaginary number is actually  +/– cos 60o +/– sin 60o .  That would be true whether it 
is in the 90o coordinate system or the 60o coordinate system. Therefore it is an interface. 

To turn this to a  60o coordinate system, n would have to be equal to 2/(√3), and s = 0. 
The result would be sin 60o = 1 and cos 60o = 0. On the other hand, the sin 60o of the 60o 
coordinate system is equal to twice the cos 60o of the 90o coordinate system. This is due to the 
fact that, taking half of a unit equilateral triangle, which is a right triangle, with the angle 
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opposite the height of the triangle equal to 60o, the base is one half the hypotenuse. The 
hypotenuse is the sine of the angle in the 60o coordinate system, whereas the base is the cosine 
of the angel in the 60o coordinate system. The height is not taken into consideration. 

The sec of 60o is 2 which is the length of two connected sides of the unit hexagon. The 
tan of 60o is √3 which is the length of a line connecting the two ends of the two connected sides
of the unit hexagon.  With this information, a table of the trigonometric functions can be 
produced.

A trigonometric table based on a single triangle within a unit hexagon using degree 
measure q:
Even though degree measure is used, the result is the same as radian measure because it is 
based upon chords of the circle and not the circle itself.

q Sin q Cos q Tan q Cot q

0o 0 1 0 ∞

10o 1/6 5/6 (√3)/12, 1/5 5

15
o 1/4 3/4 (√3)/8, 1/3 3

20o 1/3 2/3 (√3)/6, ½ 2

30o ½ (√3)/2, ½ (√3)/4, 1 1

40o 2/3 1/3 (√3)/3, 2 1/2

45
o 1/(√2), 3/4 1/(√2), 1/4 1, 3 1/3

50o 5/6 1/6 5(√3)/12, 5 1/5

60o (√3)/2, 1 ½, 0 (√3), ∞ 0

(Sec q = Sin q or Cos q because a secant is the chord underneath the arc. In other words, Sec q  
= x + y. (On the  30o,  45

o
, and  60o, as well as the Tan q column, I have included measures from

the 90o coordinate system.) 

Also included in trigonometric measurement is the functions of
secant, cosecant, and cotangent which are the reciprocals of cosine, sine,
and tangent, respectively. 

I include here a table of imaginary numbers obtained from the right
triangle.

Z h ½ x X I–numbers

1 (√3)/2 1/2 1 +/– ½ +/– (√3)/2

2 √3 1 2 +/– 1 +/– √3

3 3(√3)/2 1 1/2 3 +/– 1½ +/– 3(√3)/2
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4 2(√3) 2 4 +/– 2 +/– 2√3

5 5(√3)/2 2 1/2 5 +/– 2½ +/– 5(√3)/2

6 3(√3) 3 6 +/– 3 +/– 3√3

7 7(√3)/2 3 1/2 7 +/– 3½ +/– 7(√3)/2

8 4(√3) 4 8 +/– 4 +/– 4√3

9 9(√3)/2 4 1/2 9 +/–4½ +/– 9(√3)/2

The radius r of a circle is the hypotenuse of a right triangle. The perpendicular leg h 
extending down from the point (x

o
, y

o
) on the circle is the sine of the

opposite angle, whereas the base of the triangle is the cosine of the
same angle, the angle q which the radius  makes with the x–axis. Let
this circle enclose a hexagon such that the sides of the hexagon are
the chords of the circle. The point (x, y) where the radius r intersects
the  hexagon is the start of the 60o coordinate system. A line y
extending down from the point (x, y) to intersect the x–axis at 60o  is
the y coordinate. From that point x back to the origin is the x
coordinate. These two lines x and y added together give the same
length as the radius r. x' is the base of the right triangle. 

r – x' is the distance between the two points (x
o
, y

o
) on the arc and (x, y) on the chord. 

Why? 
First,  because X = r. That's a given.
Second, the right triangles Cx'B and C(x, y)B share the same side CB, the chord of the 

arc between C and B.  
Third, the angle between r and CB and the angle between X and CB are equal,and 
Fourth, angle Bx'C = angle C(x, y)B, they both being right angles, and since there are 

two angles in the two right triangles that are equal plus the fact that they share one side, the two
triangles are equal. 
Therefore, (x, y)C = x'B. A vertical dropped down from (x, y) gives you the imaginary number. 
y = h.  

Why? 

First, the two right triangles are equal.

Second, the two bases  of the right triangles are equal.

Third, the two right triangles share the same side CB.

Let the two equal bases be b. Let the side CD be a. Then h = √(a
2
 + b

2
). But (x, y)B is 

also equal to √(a
2
 + b

2
), and y = (x, y)B because (x, y)B is part of an equilateral triangle where 

y is one of the sides, so, h = y.
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Now if h = sin q , then y is also equal to sin q. cos θ  is merely found by subtracting y 
from r.

The point (x, y) is on the secant z, and not on the circle c. If
the length of the secant approaches zero, then we might say that
the point (x, y) coincides with a point on c, but this mathematics is
more concerned with points on the hexagon. 

Remember that x =  r cos q and y = r sin q .

For a point extending from the side of a smaller hexagon
within a larger hexagon to the side of that enclosing hexagon, and
the two hexagons share a common center,  then the outer point 
( x

o 
+ r cosq, y

o
 + r sinq)  is an extension of the inner point (x

o
, y

o
).
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Chapter Five
A Geometric Algebra

(inspired by David Orlin Hestenes)

Multiplying Vectors

(taken from New Foundations for Classical Mechanics by David Hestenes, p. 17)

Algebraic systems fail to indicate the difference between scalars and vectors. This 
difference is not reflected in the rules for addition, but in the different geometric 
interpretations. Descates gave rules for “multiplying” line segments in which the direction 
didn't matter, and the result was a dilation or projection. We can take a different path and use 
rules for multiplication of line segments in which the direction does matter, that is, use a 
construction for the multiplication of two vectors. The construction that is familiar is the 
perpendicular projection of one line segment onto another. If only the relative direction of the 
line segments to be multiplied is needed, the result can be multiplied by the magnitude of either
of them. 

The Inner Product , also called the Dot Product, of two directed line segments a and b, 
written a . b is defined to be the oriented line segment obtained by dilating the projection of a 
onto b by the magnitude of b. The resulting line segment is a scalar. 
The definition of a . b implies the relationship of a and b to the angle θ by  

 a . b = |a||b| cos θ.
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In Euclidean space, the inner product is always positive,
a

2
 =  a . a > 0 Va ≠ 0.

We define the cosine of the angle between the two vectors a and b as
 a . b / |a||b| = cos θ.

(In non–Euclidean spaces we cannot do this. We can however introduce an orthogonal frame 
and compute the dot product as in Minkowski space–time as a

μ
b

μ
 or ημυa

μ
b

υ
, where ημυ  is the 

metric tensor.)

The reason that the resultant line segment is a scalar is because we are talking about 
relative direction in the definition of  a . b  and not the direction of either a or b. This way, the 
angle between a and b remains constant and produces an important symmetry property of 

a . b  =  b . a .    (5.1)
The projection of a onto b dilated by |b| gives the same result as b projected onto a and 

dilated by |a|.

(taken from New Foundations for Classical Mechanics by David Hestenes, p. 19)
Two other algebraic properties can be deduced for the definition of the inner product. Its 

relation to scalar multiplication of vectors is expressed by 
(λa) . b = λ(a . b) = a . (λb) where λ is positive, negative or zero. (5.2)

Its relation to vector addition can be expressed by the distributive rule:
a . (b + c) =  a . b +  a . c .  (5.3)

The magnitude of a vector is related to the inner product by 
a . a = | a |2  ≥ 0.  (5.4)

Of course,  a . a = 0 if and only if a = 0.
The inner product can be used to compare angles and the lengths of line segments. 
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Important theorems of geometry and trigonometry can be proved by the methods of 
vector algebra. This can be realized by using a simple vector equation for a triangle, viz.  

c = a + b .
By using the inner product and squaring, using the distributive rule, one gets an equation

relating the sides of a triangle to its inner angles:
c . c =  (a + b) . (a + b)

                  =   a . (a + b) +  b . (a + b)
                  =   (a . a) + (b . b) + (a . b) + (b . a) , then, 
    | c |2 = | a |2  + | b |2 + 2( a . b) which can be expressed in terms of scalars as

     c2 = a2 + b2 + 2ab cos C.
This formula is called the law of cosines in trigonometry. If C reduces to zero, we have the 
Pythagorean Theorem. Therefore, the inner product is a link between the 60o coordinate system 
and the 90o coordinate system.

Similarly, from a = c – b and squaring, one gets the the law of sines, 
sin A  / a = sin B / b = sin C / c .

The Inner Product can be fully defined as a rule relating scalars to vectors having the 
properties of equations 5.1 through 5.4.The results of geometric and trigonometric theorems 
can be obtained easily from the algebra. For example, the fact that lines a and b are 
perpendicular can be written as a . b  =  0. The algebra becomes a useful language for 
describing the real world.

Note: The Cross Product, exists only in 3–D such that a x b is perpendicular to the plane 
defined by a and b. It has a magnitude of |a||b| sin θ. Also, a, b, and a x b form a right–handed 
set. Introducing a right–handed orthonormal frame {e

i
}, we have 

e
1
 x e

2
 = e

3
, etc.

or generalizing, using index notation,
ei x ej = eijk ek.

Now if we expand the vectors in terms of components a =  a
i 
e

i
 and b =  b

i 
e

i
, we have,

a x b = (a
i 
e

i
) x (b

j
e

j
)

         =  a
i 
b

j
(e

i
 x e

j
)

         = (εijkai bj ) ek.

But the geometric definition is in terms of frames. One aim of Geometric Algebra is to avoid 
introducing frames as much as possible.

The Outer Product

The failing of the cross product is that it exists only in 3 dimensions. It cannot exist in 2 
dimensions. With an outer product, we can encode a plane geometrically without relying upon 
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a vector perpendicular to it. We define an outer product as the area swept out by a and b. This is
denoted as a /\ b, called 'a wedge b'. The plane has an area of  |a||b| sin θ which is defined to be 
the magnitude of a /\ b. There have been many systems such as tensor algebra, matrix algebra 
and spinor algebra designed to express this geometrical idea. All of these other systems can be 
expressed using this outer product. 

In the words of David Hestenes, 
The principle that the product of two vectors ought to describe their relative 
directions presided over the definition of the inner product. But the inner product 
falls short of a complete fulfillment of that principle, because it fails to express the 
fundamental geometrical fact that two non–parallel lines determine a 
parallelogram.  (New Foundations for Classical Mechanics by David Hestenes, p. 21)

But we are thinking about the equilateral triangle and the geometric property of area as the 
geometrical product of two sides of the triangle expressed as the third side. 

The result of the outer product is neither a scalar nor a vector. It is a new mathematical 
entity. It is the notion of an oriented plane segment or area. It is called a bivector. It can be 
visualized as an equilateral triangle with one vector sweeping back into the other. (The vector 
showing the direction of sweep is always the third vector opposite the angle created by the 
other two vectors.) Changing the order of the sweep reverses the orientation of the plane.

                                – y /\ x = z                    or                    – z /\ – x =  y
                                 a /\ b = c                                                 b /\ a = – c
                  x is swept towards – y, b into a             – x is swept towards – z, a into b   

or x is swept across z  and – x is swept across y
Recalling the tetrahedral roots of one, there were two triangles, each rotating in opposite 

directions.  These are defined as outer products (similar to the cross product x x y in 3 
dimensions, but applied to 2 dimensions), such that x /\ z = – y = 1, or – z /\ – x =  y = 1. 

(These triangles are related to the equations a + b = c and a – c = – b. )

Generalizing,  a /\ b = c and b /\ a = – c. Let c always point upward. Therefore, c going 
counterclockwise is z, and c going clockwise is y. This will be the standard. a /\ b is directed 
counterclockwise and b /\ a is directed clockwise. Then a is always swept into b clockwise, and
b is always swept into a counterclockwise. Let the outer product be defined as the area of a unit
directed equilateral triangle, so if a = b = 1, a /\ b = 1, and b /\ a = – 1 . In Nature's Way of 
Measuring, a unit bivector has the area of 1. 
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The bivector is not a set of points but is a directional relation of that set of points, 
specifying the the plane the points are in. As a vector is a directional relation of points on a 
line, the bivector characterizes the directional relation of points within an area of a plane. 

Because b /\ a = – a /\ b = – c, the outer product is anticommutative. The relation between
vector orientation and bivector orientation is fixed by the rule:

b /\ a = a /\ (– b) = (– b) /\ (– a) = (– a) /\ b.  (5.4)
If left crosses over to right, it changes sign, but if right crosses over to left, it does not change 
sign. This comes from the correspondence of vectors and bivectors with line segments and 
plane segments. 

This  can be expressed with scalars as 
y – x = – z,     x + y = – z,       x – y = z,     – x – y = z   

This is because if y and  z have both been rotated 180o, then x remains the same to keep the 
same triangular orientation, but if y and  z are then rotated 60o, then x is rotated 180o. A rotation
of 180o does not change the sign of a the third number, but a rotation of 60o does.

The magnitude of a /\ b is just the area of an equiangular equilateral triangle. Therefore,
|B| = |a /\ b| = |b /\ a| = |a| |b| sin θ,   (5.5)

where θ is the angle between a and b and  0o ≤  θ ≤  60o . If that is the case, then θ is found 
within a hexagon which is divided up into six 60o angles. Therefore, this definition handles any
angle.

Scalar multiplication for bivectors is the same as for vectors. For any bivectors A and B 
and scalar λ , then 

B =  λ A   (5.6)
means that the magnitude of A is dilated by λ , that is, 

|B| = λ |A| 
where the direction of A is the same as B unless λ is negative. This last stipulation can be 
expressed by multiplication by numbers 1 and – 1: 

B = B, (– 1) B = – B.  (5.7)

Bivectors which are scalar multiples of one another are said to be codirectional.

Scalar multiplications of vectors and bivectors are related by 
 λ(a /\ b) = ( λa) /\ b = a /\( λb).   (5.8) (an either/or situation: either a is multiplied by λ or
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b is multiplied by λ.)
For  λ = – 1, this equation is the same as equation (5.4). For positive  λ, equation 5.8 

shows that dilation of one side of the triangle is dilated the same amount as the other side.

By equation 5.5, if sin θ = 0 then |a /\ b| = 0 for non–zero a and b. This is the algebraic 
way of saying that a and b are collinear. It follows that |a /\ b| = 0 if and only if a /\ b = 0. (This 
follows the principle of vectors that if the magnitude of a vector is zero, then the vector is 
zero.) Therefore, the outer product a /\ b of non–zero vectors is zero if and only if they are 
collinear.
Assuming that 

a /\ b = 0  and  b =  λa, then 
a /\ a = 0. 

Using the anticommutative rule,
a /\ a = – a /\ a

for only zero is equal to its own negative. The vector a is collinear with itself. 

From Area to Volume

Outer multiplications and addition have a relationship in the distributive rule:
a /\ (b + c) = a /\ b + a /\ c.

This relates addition of bivectors on the right to the addition of vectors on the left. The 
algebraic properties of bivectors are completely determined by the properties of vectors.  The 
addition of two bivectors is a bivector and this addition is associative. 

But what about (a /\ b) + (c /\ d) = (a + c) /\ (b + d)? Is that true?
In 3–d the addition of bivectors is easily visualized. The plane of a bivector can be 

shown within a vortex or a twist of three vectors in three dimensions. Taking the three vectors 
of a vortex and combining them to three vectors of the opposite twist, a tetrahedron is formed 
showing the distributive property of bivectors. 
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The inner and outer products are compliments of each other. They are both measures of 
relative direction. If a relation is too difficult to obtain using one, then it can be found with the 
other. Whereas the equation  a ●  b = 0 provides a simple expression for two perpendicular lines, 
a /\ b = 0 provides a simple expression for two parallel lines.

Perpendicular lines >  a ●  b = 0
Parallel lines >      a /\ b = 0

Take the outer product, for example, of a + b = c successively with vectors a, b, and c. 
This produces the equations 

a /\ b = a /\ c
b /\ a = b /\ c
c /\ a = c /\ b 

which can be expressed by 

a /\ c = a /\ b = c /\ b.  

Expressed in magnitudes,

|a /\ c| = |a /\ b| = |c /\ b|, 

and using the definition of the outer product, 

|a||c|sin θ = |a||b|sin θ = |c||b|sin θ,

using the scalar labels A, B, C for the angles of a triangle, and dividing by abc, we obtain 

sin A  =  sin B =  sin C . 

       a            b            c      

All the formulas for plane and spherical trigonometry can be derived using inner and 
outer products. 

Properties of a bivector:
1. The outer product of two vectors is antisymmetric, 
                              a /\ b = – b /\ a.

This follows from the geometric definition.
2. The outer product is distributive. That is,

   a /\ (b + c) = a /\ b + a /\ c.
3. Bivectors form a linear space the same as vectors do.
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Bivectors were originally based upon directed parallelograms. Now, there is really no 
unique dependence on a and b. If a' = a + λb we still have a'/\ b = a /\ b. Let λb  = c. Therefore, 
we have (a + c) /\ b = a /\ b + c /\ b  where c /\ b = λb /\ b = 0, since λb and b are parallel. Thus, 
it is sometimes better to replace the directed parallelogram with a directed circuit, and the 
equilateral triangle is the simplest directed circuit. 

Three Dimensions

The outer product can be generalized. Just as a triangular plane segment is swept out by 
a vector or line segment, a spacial segment of a tetrahedron is swept out by a plane segment. A 
bivector a /\ b moves at a distance and direction symbolized by the vector c producing a 
tetrahedron. 

The algebra of Hamiltonian quaternions contains 4 elements {1, i, j, k}, but only three of 
these specify a vector. This can be generalized by defining the 1 as a fourth vector. {1, i, j, k} is
generalized as {a, b, c, d}.  This fourth dimension d can be interpreted as time, so the 
Hamiltonian can be demonstrated with a tetrahedron T, a
trivector.  We write the outer product of a bivector a /\ b
with a vector c as 

(a /\ b)/\ c = T.

As for bivectors, trivectors obey the associative rule:

(a /\ b)/\ c = a /\ (b /\ c).

This rule can be determined from another rule: (a /\ b) = –
(b /\ a) such that

(b /\ a)/\ c = (– a /\ b)/\ c = – T .

Thus, the orientation of a trivector can be reversed by reversing the orientation of only one of 
its components. This makes it possible to rearrange the vectors to get 

(a /\ b)/\ c = (b /\ c)/\ a = (c /\ a)/\ b,

which means that (a /\ b) sweeping along c, (b /\ c) sweeping along a, and (c /\ a) sweeping 
along b, all results in the same tetrahedron. But if 

(a /\ b)/\ c = a /\ b /\ c = 0, 

then c lies in the same plane as a and b, and a tetrahedron is not produced. 

Also, as bivectors are anticommutative, so are trivectors:
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c /\ b /\ a = – a /\ b /\ c.

Without such algebraic apparatus, any geometrical idea of relative orientation would be 
difficult to express. Adding more dimensions does not add any new insights into the relation 
between algebra and geometry. The displacement of a trivector a /\ b /\ c along a fourth vector d
does not produce a fourth–dimensional space segment analogous to a three dimensional 
tetrahedron, especially since the tetrahedron is enough to demonstrate a four dimensional 
manifold. 

So (a /\ b /\ c)/\ d = a /\ b /\ c /\ d = 0.

The Geometric Product

The symmetric inner product a . b and the antisymmetric outer product a /\ b are 
combined in the geometric product, called a multivector,  

ab = a . b + a /\ b. 
It can also be thought of as composed of real and imaginary parts. The inner product is the real 
part.  

Since  a . b =  b . a, and a /\ b =  – b /\ a, by the symmetry/antisymmetry use of the terms,

ba =  b . a + b /\ a = a . b  – a /\ b. 
It follows that by taking the sun and difference of the equations for ab and ba that

               a . b = ½ (ab + ba)  and  a /\ b = ½ (ab – ba).

We can thus form other products in terms of the geometric product.
ab = ½ [(ab + ba) + (ab – ba)].

Remember that the area of a parallelogram is the determinant of two vectors or [ad – bc]. Half 
of that determinant is the area of a triangle. a/\b is the area of a trinagle, so if a/\b = ½ (ab – ba),
then the difference of two multivectors (ab – ba) is a determinant. 

Properties of the Geometric Product:

1. General elements of a Geometric Algebra are called multivectors and are usually written 
in upper case, (A, B, C, … ). These form a linear space in which scalars can be added to 
bivectors, and vectors, etc.
2. The geometric product is associative:

A(BC) = (AB)C = ABC
3. The geometric product is distributive:

A(B+C) = AB + AC
(Matrix multiplication is a good thing to keep in mind.)

4. The triangle of any vector is a scalar.
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The proof of this last property is to prove that the inner product of any two vectors is a 
scalar.
Let c = a + b, and therefore, c

2
 = (a + b)

2
. Expanding,

(a + b)
2
  = (a + b)(a + b)

      
= a

2
 + b

2
 + ab + ba

It follows that 
ab + ba = (a + b)

2 
– a

2
 – b

2
 

In geometric algebra, ab = C has the solution b = a 
– 1

 C. Neither the dot product nor the 
cross product are capable of this inversion on their own.

Geometric Algebra in 2–d

Consider a plane which is spanned by 2 orthonormal vectors i and j. These basis vectors 

satisfy i
2
 =  j

2 
= 1, i

 
. j = 0, and |i|

 
= |j|.

The next entity present in a 2 dimensional algebra is the bivector i
 
/\ j . By convention, 

bivectors are right–handed, so that i
 
sweeps onto j 

 
in a right–handed sense when viewed from 

above. But if we keep the convention of j always being vertical,  j sweeps into i either way. 

classical arrangement the geometric product i /\ j j is always vertical

The other convention is that the head of one vector connects to the  end point of the other 
vector.

Let I = i /\ j  =  i j. When I =  i
 
/\ j , we call I a pseudoscalar.  The full algebra is spanned by

1  { i , j} i /\ j

1 scalar 2 unit vectors 1 bivector
            

We denote this algebra by G
2
. The law of multiplication for G

2
 is that the geometric product
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               i j = i . j  +  i /\ j =  i /\ j .

That is, for orthogonal vectors, the geometric product is a pure bivector. Because of the 
anticommutativity property of bivectors, i j =  i /\ j =  j /\ – i =  – (j i). In Geometric Algebra, 
orthonormal vectors anticommute.

We can now form products from the right and from the left. Multiplying a vector by a 
bivector from the left, we rotate the vector clockwise 60o. Let i be multiplied by ij on the left. 

(i j) i = ( – j i) i = – 
 
j (i i) = – 

 
j, 

The vector  has been rotated clockwise 60o 

where – j =  j' by convention.
This can be visualized by using triangular
vectors:

Let j be rotated by ij on the left.
 (i j)

 
j =  i(

 
j

 
j)  =  i.

If j is rotated from the left, it is rotated
clockwise 120o . 

Similarly, acting from the right, 
i (i j) =   i

 
i j =  

 
j, 

j (i j) =  – 
 
j 

 
j i  =  – i.

Multiplying from the right rotates a vector 
clockwise, either 120o or 60o.   

The final product in the algebra is the 
triangle of the bivector. 

I 
2  

= ( i
 
/\ j )

2
 =  i j

 
i j

 
= – i i

 
j j

 
= – 1.

We have discovered a purely geometric 
quantity which triangles to – 1. Two successive
left or right multiplications of a vector by i j 
rotates the vector through 180

o
 which is 

equivalent to multiplying by – 1. But only (i j) 
i or j (i j) will transform into I 

2 
 or  – 1.

Taking (i j) i =  – 
 
j and multiplying each side by j, (i j) i j = – 

 
j j, we have I 

2  
=  – 1. Then

taking 
 
j (i j) =  –  I and multiplying each side by i, i j (i j) =  –  i i, we again have I 

2  
=  – 1.

This cannot be done with (i j)
 
j  =  i and   i (i j) =  

 
j. All you wind up with is 1 = 1.
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Complex Numbers

 It appears that the bivector triangled brings the same result as an imaginary number 
triangled. That is, I 

2  
=  – 1. As functions, they both rotate a vector 60o .  The combination of a 

scalar and a bivector are naturally formed using the geometric product and can be viewed as a 
complex number 

Z = u + v i j = u + I v. 
Every complex number has a real and an imaginary part.

In G
2
, vectors are grade–1 objects, 

x = ui + vj. 
The mapping between this vector x and the complex number Z is simply premultiplying by i. 

xi = uii + vij = u + I v = Z. 
Using this method, vectors can be interchanged with complex numbers.

Geometric Algebra of 3 Dimensions

We now add a third vector k to our 2–d set { i , j}. A plane
is spanned by 3 orthonormal vectors i, j, k. All three vectors are
assumed to be orthonormal, so they all anticommute. From these
three vectors are generated three independent bivectors ij, jk,
and ik. This is the expected number of independent planes in
3–D space.

The expanded algebra gives a number of new products to
consider. One is the product of a bivector and an orthogonal
vector,

(i /\ j)k = ijk.
This corresponds to the bivector, a plane, i /\ j, along the vector k. The result is a three 
dimensional volume element called a trivector i /\ j /\ k. The same result can be seen as j /\ k 
sweeps along i. Generalizing, (a /\ b) c = abc. This gives us the 12 bivectors :
     

clockwise counterclockwise
 i(–j)k, –jki, ki(–j), –ij(–k), j(–k)(–i), –k(–i)j,  ik(–j), –jik, k(–j)i, –i(–k)j,  j(–i)(–k), –kj(–i)

But some of these can be eliminated, as they are the same triangle, giving us 4 basic trivectors:

clockwise counterclockwise
i(–j)k, –ij(–k), ik(–j), –i(–k)j

(Instead of ordering the vectors, only the signs have been ordered such that – + +, + – – ,– + –,  
+ – +, + – –, – – +, + + +, and – – – , etc. There are actually 12 combinations, but 8 of them are 
not trivectors in that they do not exhibit circuitry.) 

The basis vectors i, j, k satisfy 
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 i
2
 = j 

2 
= k 

2
= 1, i . j = 0, j . k = 0, k . i = 0, I =  (i /\ j /\ k) = i j k, I

2
 =  – 1 and  

             i –  j =
  
k, – i + j = – k

 
,  and  etc., using all the above combinations,

which are called the properties of the algebra G
3 
, which is spaned  by 

1  {i, j, k} {i /\ j, j /\ k, k /\ i} {i /\ j /\ k}

1 scalar 3 unit
vectors 

3 bivectors
1 trivector

The other main property of G
3
 is that it is antisymmetric on every pair of vectors, 

a/\b/\c/\ =  – b/\a/\c = b/\c/\a = etc.  
Swapping any two vectors reverses the orientation of the product.

The properties of the trivector I, or as it is sometimes called, a pseudoscalar, or directed 
volume, is that it is right handed. In other words, i – j = k. Yet, in the 60o coordinate system, 
there is a reflection – i + j = – k, which, when combined with I produces a hexagonal 
coordinate system such that |xi| + |yj| = |zk|.

Consider the product of a vector and pseudoscalar, iI = i(ijk) = jk. This returns a 
bivector, the plane orthogonal to the original vector. Multiplying from the left, (ijk)i = jk, we 
find an independence of order. It follows then that I commutes with all the elements in the 
algebra. If a is any vector, then a I = I a. This is true with of the pseudoscalar in all odd 
dimensions. In even dimensions, the pseudoscalar anticommutes with all vectors as we saw in 
G2.
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Each of the basis bivectors can be expressed as the product of the pseudoscalar and what 
is known as the dual vector

ij = I k,    jk = I i,   ki = I j
This operation is known as duality transformation. Also, 

a I = a . I
can be understood as a projection onto the component of  I orthogonal to a. 

The product of a bivector and a pseudoscalar
I(i /\ j) = I ijkk = I I k  = – k         (note kk = 1)

the bivector being mapped onto a vector via the duality operation.

The square of the pseudoscalar is I 2 = ijkijk = ijij = – iijj =  – 1 .

 
Multiplying Vectors

The Inner Product
The inner product is usually written in the form  a · b. In Euclidean space, the inner 

product is positive definitive, 
a

2
 =   a · a > 0    Va ≠ 0.

From this we recover the Schwarz inequality 
(a + λb)

2  
> 0   Vλ

 ==> a 
2
  + 2 λ a · b + λ 

2
 b 

2
  > 0  Vλ

       ==>(a · b)
2   

≤ a 
2
 b 

2
 .

We use this to define the cosine of the angle between a and b.
a · b = |a||b| cos q . 

The cross product has one major failing. It only exists in 3 dimensions. What we need is 
a means of representing a plane geometrically, without relying upon the notion of a vector 
perpendicular to it. We can represent orthogonal vectors in two dimensions. We can do this by 
the use of the outer or exterior product called a bivector.

We define the outer product to be the area swept out by a and b. This is denoted by a /\ b.
The plane has the area |a||b| sin q , which is defined to be the product of a /\ b, called a bivector.
It can be visualized as a triangle  as a plane with the base or initial side sweeping out the area 
towards the terminal side of the triangle. Changing the order of the sides or vectors reverses the
orientation of the plane.

The bivector creates a real vector space with a geometric product ab.

An arbitrary bivector can be decomposed in terms of orthonormal frame of bivectors
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a /\ b =  (a
i
e

i
) /\ (b

j
e

j
)

=  (a
2
b

3
 – b

3
a

2
)e

2
 /\ e

3
 + (a

3
b

1
 – a

1
b

3
)e

3
 /\ e

1
 + (a

1
b

2
 – a

2
b

1
)e

1
 /\ e

2
. 

The components in this equation are those of the cross product.

The standard concept of a real vector space for vectors a, b, c by the following rules:

(ab)c = a(bc) , associative (1)
a(b + c) = ab + ac , left distributive (2)
(b + c)a = ba + ca , right distributive (3)
a

2
 = | a |

2
 . contraction (4)

where | a | is a positive scalar called the magnitude of a, and | a | = 0 implies that a = 0.

These rules are common ordinary scalar algebra. The difference is the lack of a 
commutative rule. Consequently, left and right distributive rules must be postulated separately. 
The contraction rule (4) is peculiar to geometric algebra.

 From the geometric product ab we can define two new products, a symmetric
inner product

a /\ b = 1/2 (ab + ba) = b ·a;     (5)
and an antisymmetric outer product

 a /\ b = 1/2 (ab – ba) = – b /\ a.(6)
Therefore, the geometric product has the canonical decomposition

          ab = a · b + a /\ b .
The geometric significance of the outer product a /\ b should be familiar
from the standard vector cross product a x b, but it is interpreted geometrically as an oriented 
plane segment, as shown in Fig. 2. It differs from a x b in in the fact that .

a /\ b          b /\a
Fig. 2. Bivectors a /\ b and b /\ a represent plane segments of opposite
orientation as specifed by a “triangular rule” for drawing the
segments.

From the geometric interpretations of the inner and outer products, we can infer an 
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interpretation of the geometric product for extreme cases. 
For orthogonal vectors, we have from (5)

a · b = 0 <==> ab = – ba.(8)

On the other hand, collinear vectors determine a parallelogram with vanishing
area (Fig. 2), so from (6) we have

a /\ b = 0  <==>  ab =  ba.(9)

Thus, the geometric product ab provides a measure of the relative direction
of the vectors. Commutativity means that the vectors are collinear. Anticommutativity
means that they are orthogonal. Multiplication can be reduced to
these extreme cases by introducing an orthonormal basis.


